BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33321360)

  • 21. Residues, dissipation kinetics, and dietary intake risk assessment of two fungicides in grape and soil.
    Wang S; Zhang Q; Yu Y; Chen Y; Zeng S; Lu P; Hu D
    Regul Toxicol Pharmacol; 2018 Dec; 100():72-79. PubMed ID: 30359702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of fungicide residues in field-grown strawberries following different fungicide strategies against gray mold (Botrytis cinerea).
    Rabølle M; Spliid NH; Kristensen K; Kudsk P
    J Agric Food Chem; 2006 Feb; 54(3):900-8. PubMed ID: 16448201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigation on fungicide residues in greenhouse-grown strawberries.
    Stensvand A; Christiansen A
    J Agric Food Chem; 2000 Mar; 48(3):917-20. PubMed ID: 10725174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling.
    Lozowicka B; Jankowska M; Hrynko I; Kaczynski P
    Environ Monit Assess; 2016 Jan; 188(1):51. PubMed ID: 26694708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissipation and residue of triforine in strawberry and soil.
    Zhang N; Li H; Zhou Y; Hu W; Zhang Z
    Environ Monit Assess; 2014 Mar; 186(3):1377-84. PubMed ID: 24122157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissipation, residue, stereoselectivity and dietary risk assessment of penthiopyrad and metabolite PAM on cucumber and tomato in greenhouse and field.
    Yang G; Li J; Lan T; Dou L; Zhang K
    Food Chem; 2022 Sep; 387():132875. PubMed ID: 35390607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Processing factors and variability of pyrimethanil, fenhexamid and tolylfluanid in strawberries.
    Christensen HB; Granby K; Rabølle M
    Food Addit Contam; 2003 Aug; 20(8):728-41. PubMed ID: 13129790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disappearance of azoxystrobin, pyrimethanil, cyprodinil, and fludioxonil on tomatoes in a greenhouse.
    Garau VL; Angioni A; Del Real AA; Russo M; Cabras P
    J Agric Food Chem; 2002 Mar; 50(7):1929-32. PubMed ID: 11902935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissipation and residues of boscalid in strawberries and soils.
    Chen L; Zhang S
    Bull Environ Contam Toxicol; 2010 Mar; 84(3):301-4. PubMed ID: 20111950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissipation of sixteen pesticide residues from various applications of commercial formulations on strawberry and their risk assessment under greenhouse conditions.
    Song L; Zhong Z; Han Y; Zheng Q; Qin Y; Wu Q; He X; Pan C
    Ecotoxicol Environ Saf; 2020 Jan; 188():109842. PubMed ID: 31707322
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensory Quality, Physicochemical Attributes, Polyphenol Profiles, and Residual Fungicides in Strawberries from Different Disease-Control Treatments.
    Abountiolas M; Kelly K; Yagiz Y; Li Z; Mahnken G; Borejsza-Wysocki W; Marshall M; Sims CA; Peres N; do Nascimento Nunes MC
    J Agric Food Chem; 2018 Jul; 66(27):6986-6996. PubMed ID: 29927581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissipation dynamic, residue distribution and processing factor of hexythiazox in strawberry fruits under open field condition.
    Saber AN; Malhat FM; Badawy HM; Barakat DA
    Food Chem; 2016 Apr; 196():1108-16. PubMed ID: 26593595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stereoselective behavior and residues of the imazalil during strawberry growth and strawberry wine production.
    Zhang J; Jiang W; Jia Z; Zhang W; Zhang T; Wei M
    J Food Prot; 2023 Jan; 86(1):100006. PubMed ID: 36916581
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Residual behavior and risk assessment of fluopyram, acetamiprid and chlorantraniliprole used individually or in combination on strawberry.
    Li Y; Luo Y; Jiang J; He H; Zhang C; Zhao X
    Environ Sci Pollut Res Int; 2023 May; 30(23):64700-64709. PubMed ID: 37072589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissipation behavior, residue distribution and dietary risk assessment of field-incurred boscalid and pyraclostrobin in grape and grape field soil via MWCNTs-based QuEChERS using an RRLC-QqQ-MS/MS technique.
    Chen X; He S; Gao Y; Ma Y; Hu J; Liu X
    Food Chem; 2019 Feb; 274():291-297. PubMed ID: 30372941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Residues, dissipation and risk evaluation of spiroxamine in open-field-grown strawberries using liquid chromatography tandem mass spectrometry.
    Malhat FM
    Biomed Chromatogr; 2020 Jul; 34(7):e4836. PubMed ID: 32222076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of pesticide residual levels in strawberry (Fragaria) by near-infrared spectroscopy.
    Yazici A; Tiryaki GY; Ayvaz H
    J Sci Food Agric; 2020 Mar; 100(5):1980-1989. PubMed ID: 31849062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Residues behavior of some fungicides applied on two greenhouse tomato varieties different in shape and weight.
    Cabizza M; Dedola F; Satta M
    J Environ Sci Health B; 2012; 47(5):379-84. PubMed ID: 22424061
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pesticide residues in berries harvested from South-Eastern Poland (2009-2011).
    Matyaszek A; Szpyrka E; Podbielska M; Słowik-Borowiec M; Kurdziel A
    Rocz Panstw Zakl Hig; 2013; 64(1):25-9. PubMed ID: 23789309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissipation kinetics, pre-harvest residue limits, and dietary risk assessment of the systemic fungicide metalaxyl in Swiss chard grown under greenhouse conditions.
    Kabir MH; Abd El-Aty AM; Rahman MM; Chung HS; Lee HS; Jeong JH; Wang J; Shin S; Shin HC; Shim JH
    Regul Toxicol Pharmacol; 2018 Feb; 92():201-206. PubMed ID: 29233770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.