BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33321371)

  • 21. A Monte Carlo study on the performance evaluation of a parallel hole collimator for a HiReSPECT: A dedicated small-animal SPECT.
    Abbaspour S; Tanha K; Mahmoudian B; Assadi M; Pirayesh Islamian J
    Appl Radiat Isot; 2018 Sep; 139():53-60. PubMed ID: 29704706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved quantitative
    Dewaraja YK; Chun SY; Srinivasa RN; Kaza RK; Cuneo KC; Majdalany BS; Novelli PM; Ljungberg M; Fessler JA
    Med Phys; 2017 Dec; 44(12):6364-6376. PubMed ID: 28940483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Collimator design for a multipinhole brain SPECT insert for MRI.
    Van Audenhaege K; Van Holen R; Vanhove C; Vandenberghe S
    Med Phys; 2015 Nov; 42(11):667989. PubMed ID: 26520758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The origin and reduction of spurious extrahepatic counts observed in
    Walrand S; Hesse M; Jamar F; Lhommel R
    Phys Med Biol; 2018 Mar; 63(7):075016. PubMed ID: 29513273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Y-90 SPECT ML image reconstruction with a new model for tissue-dependent bremsstrahlung production using CT information: a proof-of-concept study.
    Lim H; Fessler JA; Wilderman SJ; Brooks AF; Dewaraja YK
    Phys Med Biol; 2018 May; 63(11):115001. PubMed ID: 29714716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of Wolfmet Tungsten Alloys as Parallel-Hole Collimator Material on Single-Photon Emission Computed Tomography Image Quality and Functional Parameters: A Simulating Medical Imaging Nuclear Detectors Monte Carlo Study.
    Darami M; Mahmoudian B; Ljungberg M; Pirayesh Islamian J
    World J Nucl Med; 2023 Sep; 22(3):217-225. PubMed ID: 37854088
    [No Abstract]   [Full Text] [Related]  

  • 27. Characterization of scatter and penetration using Monte Carlo simulation in 131I imaging.
    Dewaraja YK; Ljungberg M; Koral KF
    J Nucl Med; 2000 Jan; 41(1):123-30. PubMed ID: 10647615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction.
    Elschot M; Smits ML; Nijsen JF; Lam MG; Zonnenberg BA; van den Bosch MA; Viergever MA; de Jong HW
    Med Phys; 2013 Nov; 40(11):112502. PubMed ID: 24320461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monte carlo study of the effect of collimator thickness on T-99m source response in single photon emission computed tomography.
    Islamian JP; Toossi MT; Momennezhad M; Zakavi SR; Sadeghi R; Ljungberg M
    World J Nucl Med; 2012 May; 11(2):70-4. PubMed ID: 23372440
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validation of the Monte Carlo simulator GATE for indium-111 imaging.
    Assié K; Gardin I; Véra P; Buvat I
    Phys Med Biol; 2005 Jul; 50(13):3113-25. PubMed ID: 15972984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of ME Collimator Characteristic, Energy Window Width, and Reconstruction Algorithm Selection on Imaging Performance of Yttrium-90: Simulation Study.
    Taherparvar P; Shahmari N
    Nucl Med Mol Imaging; 2019 Dec; 53(6):414-422. PubMed ID: 31867077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Algorithms and Analyses for Joint Spectral Image Reconstruction in Y-90 Bremsstrahlung SPECT.
    Chun SY; Nguyen MP; Phan TQ; Kim H; Fessler JA; Dewaraja YK
    IEEE Trans Med Imaging; 2020 May; 39(5):1369-1379. PubMed ID: 31647425
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: comparison with other Monte Carlo codes.
    Papadimitroulas P; Loudos G; Nikiforidis GC; Kagadis GC
    Med Phys; 2012 Aug; 39(8):5238-47. PubMed ID: 22894448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monte Carlo simulation study to explore optimum conditions for Astatine-211 SPECT.
    Takahashi A; Kajiya R; Baba S; Sasaki M
    Radiol Phys Technol; 2023 Mar; 16(1):102-108. PubMed ID: 36719548
    [No Abstract]   [Full Text] [Related]  

  • 35. The Effect of Parallel-hole Collimator Material on Image and Functional Parameters in SPECT Imaging: A SIMIND Monte Carlo Study.
    Azarm A; Islamian JP; Mahmoudian B; Gharepapagh E
    World J Nucl Med; 2015; 14(3):160-4. PubMed ID: 26420985
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physical characterization of single convergent beam device for teletherapy: theoretical and Monte Carlo approach.
    Figueroa RG; Valente M
    Phys Med Biol; 2015 Sep; 60(18):7191-206. PubMed ID: 26348025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fixed forced detection for fast SPECT Monte-Carlo simulation.
    Cajgfinger T; Rit S; Létang JM; Halty A; Sarrut D
    Phys Med Biol; 2018 Mar; 63(5):055011. PubMed ID: 29185992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of penetration and scattering components in conventional pinhole SPECT: phantom studies using Monte Carlo simulation.
    Deloar HM; Watabe H; Aoi T; Iida H
    Phys Med Biol; 2003 Apr; 48(8):995-1008. PubMed ID: 12741497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The accuracy of absorbed dose estimates in tumours determined by quantitative SPECT: a Monte Carlo study.
    Ljungberg M; Sjögreen-Gleisner K
    Acta Oncol; 2011 Aug; 50(6):981-9. PubMed ID: 21767200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SPECT imaging of high energy isotopes and isotopes with high energy contaminants with rotating slat collimators.
    Van Holen R; Staelens S; Vandenberghe S
    Med Phys; 2009 Sep; 36(9):4257-67. PubMed ID: 19810500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.