BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33321602)

  • 1. Improved hemocompatibility and reduced bacterial adhesion on superhydrophobic titania nanoflower surfaces.
    Montgomerie Z; Popat KC
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111503. PubMed ID: 33321602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Investigation of Hemocompatibility of Hydrothermally Treated Titanium and Titanium Alloy Surfaces.
    Manivasagam VK; Popat KC
    ACS Omega; 2020 Apr; 5(14):8108-8120. PubMed ID: 32309720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced hemocompatibility and antibacterial activity on titania nanotubes with tanfloc/heparin polyelectrolyte multilayers.
    Sabino RM; Kauk K; Madruga LYC; Kipper MJ; Martins AF; Popat KC
    J Biomed Mater Res A; 2020 Apr; 108(4):992-1005. PubMed ID: 31909867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation.
    Singh AV; Vyas V; Patil R; Sharma V; Scopelliti PE; Bongiorno G; Podestà A; Lenardi C; Gade WN; Milani P
    PLoS One; 2011; 6(9):e25029. PubMed ID: 21966403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting Pathogenic Biofilms: Newly Developed Superhydrophobic Coating Favors a Host-Compatible Microbial Profile on the Titanium Surface.
    Souza JGS; Bertolini M; Costa RC; Cordeiro JM; Nagay BE; de Almeida AB; Retamal-Valdes B; Nociti FH; Feres M; Rangel EC; Barão VAR
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10118-10129. PubMed ID: 32049483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.
    Huang Q; Yang Y; Hu R; Lin C; Sun L; Vogler EA
    Colloids Surf B Biointerfaces; 2015 Jan; 125():134-41. PubMed ID: 25481855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced antibacterial properties on superhydrophobic micro-nano structured titanium surface.
    Manivasagam VK; Perumal G; Arora HS; Popat KC
    J Biomed Mater Res A; 2022 Jul; 110(7):1314-1328. PubMed ID: 35188338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibacterial activity on superhydrophobic titania nanotube arrays.
    Bartlet K; Movafaghi S; Dasi LP; Kota AK; Popat KC
    Colloids Surf B Biointerfaces; 2018 Jun; 166():179-186. PubMed ID: 29579729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses.
    Xu LC; Li Z; Tian Z; Chen C; Allcock HR; Siedlecki CA
    Acta Biomater; 2018 Feb; 67():87-98. PubMed ID: 29229544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbiological and Cellular Evaluation of a Fluorine-Phosphorus-Doped Titanium Alloy, a Novel Antibacterial and Osteostimulatory Biomaterial with Potential Applications in Orthopedic Surgery.
    Aguilera-Correa JJ; Mediero A; Conesa-Buendía FM; Conde A; Arenas MÁ; de-Damborenea JJ; Esteban J
    Appl Environ Microbiol; 2019 Jan; 85(2):. PubMed ID: 30367003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of blood plasma proteins with superhemophobic titania nanotube surfaces.
    Sabino RM; Kauk K; Movafaghi S; Kota A; Popat KC
    Nanomedicine; 2019 Oct; 21():102046. PubMed ID: 31279063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces.
    Xu LC; Wo Y; Meyerhoff ME; Siedlecki CA
    Acta Biomater; 2017 Mar; 51():53-65. PubMed ID: 28087484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of Superhydrophobic Surface for Blood-Contacting Medical Devices.
    Wu XH; Liew YK; Mai CW; Then YY
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33805207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro hemocompatibility and vascular endothelial cell functionality on titania nanostructures under static and dynamic conditions for improved coronary stenting applications.
    Mohan CC; Chennazhi KP; Menon D
    Acta Biomater; 2013 Dec; 9(12):9568-77. PubMed ID: 23973390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired ultra-low fouling coatings on medical devices to prevent device-associated infections and thrombosis.
    Ozkan E; Mondal A; Douglass M; Hopkins SP; Garren M; Devine R; Pandey R; Manuel J; Singha P; Warnock J; Handa H
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):1015-1024. PubMed ID: 34785450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemocompatibility of titania nanotube arrays.
    Smith BS; Yoriya S; Grissom L; Grimes CA; Popat KC
    J Biomed Mater Res A; 2010 Nov; 95(2):350-60. PubMed ID: 20629021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zirconium Nitride Coating Reduced Staphylococcus epidermidis Biofilm Formation on Orthopaedic Implant Surfaces: An In Vitro Study.
    Pilz M; Staats K; Tobudic S; Assadian O; Presterl E; Windhager R; Holinka J
    Clin Orthop Relat Res; 2019 Feb; 477(2):461-466. PubMed ID: 30418277
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Zhang J; Li G; Li D; Zhang X; Li Q; Liu Z; Fang Y; Zhang S; Man J
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):29021-29033. PubMed ID: 34102844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Hemocompatibility on Superhemophobic Micro-Nano-Structured Titanium Surfaces.
    Manivasagam VK; Popat KC
    Bioengineering (Basel); 2022 Dec; 10(1):. PubMed ID: 36671615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bactericidal activity of the Ti-13Nb-13Zr alloy against different species of bacteria related with implant infection.
    Aguilera-Correa JJ; Conde A; Arenas MA; de-Damborenea JJ; Marin M; Doadrio AL; Esteban J
    Biomed Mater; 2017 Aug; 12(4):045022. PubMed ID: 28799523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.