These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 33321665)
1. Microstructure, mechanical properties, corrosion resistance and cytocompatibility of WE43 Mg alloy scaffolds fabricated by laser powder bed fusion for biomedical applications. Li M; Benn F; Derra T; Kröger N; Zinser M; Smeets R; Molina-Aldareguia JM; Kopp A; LLorca J Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111623. PubMed ID: 33321665 [TBL] [Abstract][Full Text] [Related]
3. Processing optimization, mechanical properties, corrosion behavior and cytocompatibility of additively manufactured Zn-0.7Li biodegradable metals. Qin Y; Yang H; Liu A; Dai J; Wen P; Zheng Y; Tian Y; Li S; Wang X Acta Biomater; 2022 Apr; 142():388-401. PubMed ID: 35085796 [TBL] [Abstract][Full Text] [Related]
4. Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: Process optimization, Liu J; Liu B; Min S; Yin B; Peng B; Yu Z; Wang C; Ma X; Wen P; Tian Y; Zheng Y Bioact Mater; 2022 Oct; 16():301-319. PubMed ID: 35415288 [TBL] [Abstract][Full Text] [Related]
5. Additive manufacturing of Zn-Mg alloy porous scaffolds with enhanced osseointegration: In vitro and in vivo studies. Qin Y; Liu A; Guo H; Shen Y; Wen P; Lin H; Xia D; Voshage M; Tian Y; Zheng Y Acta Biomater; 2022 Jun; 145():403-415. PubMed ID: 35381400 [TBL] [Abstract][Full Text] [Related]
6. Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications. Li Y; Ding Y; Munir K; Lin J; Brandt M; Atrens A; Xiao Y; Kanwar JR; Wen C Acta Biomater; 2019 Mar; 87():273-284. PubMed ID: 30690210 [TBL] [Abstract][Full Text] [Related]
7. Simulation of corrosion and mechanical degradation of additively manufactured Mg scaffolds in simulated body fluid. Marvi-Mashhadi M; Ali W; Li M; González C; LLorca J J Mech Behav Biomed Mater; 2022 Feb; 126():104881. PubMed ID: 34702672 [TBL] [Abstract][Full Text] [Related]
8. Towards refining microstructures of biodegradable magnesium alloy WE43 by spark plasma sintering. Soderlind J; Cihova M; Schäublin R; Risbud S; Löffler JF Acta Biomater; 2019 Oct; 98():67-80. PubMed ID: 31254685 [TBL] [Abstract][Full Text] [Related]
9. Influence of chemical heterogeneity and microstructure on the corrosion resistance of biodegradable WE43 magnesium alloys. Mraied H; Wang W; Cai W J Mater Chem B; 2019 Oct; 7(41):6399-6411. PubMed ID: 31642847 [TBL] [Abstract][Full Text] [Related]
10. Corrosion fatigue behavior and anti-fatigue mechanisms of an additively manufactured biodegradable zinc-magnesium gyroid scaffold. Zhao D; Han C; Peng B; Cheng T; Fan J; Yang L; Chen L; Wei Q Acta Biomater; 2022 Nov; 153():614-629. PubMed ID: 36162767 [TBL] [Abstract][Full Text] [Related]
11. Corrosion and Corrosion Fatigue Properties of Additively Manufactured Magnesium Alloy WE43 in Comparison to Titanium Alloy Ti-6Al-4V in Physiological Environment. Wegner N; Kotzem D; Wessarges Y; Emminghaus N; Hoff C; Tenkamp J; Hermsdorf J; Overmeyer L; Walther F Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31500239 [TBL] [Abstract][Full Text] [Related]
12. Toward Tailoring the Degradation Rate of Magnesium-Based Biomaterials for Various Medical Applications: Assessing Corrosion, Cytocompatibility and Immunological Effects. Hartjen P; Wegner N; Ahmadi P; Matthies L; Nada O; Fuest S; Yan M; Knipfer C; Gosau M; Walther F; Smeets R Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33478090 [TBL] [Abstract][Full Text] [Related]
13. Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds. Kopp A; Derra T; Müther M; Jauer L; Schleifenbaum JH; Voshage M; Jung O; Smeets R; Kröger N Acta Biomater; 2019 Oct; 98():23-35. PubMed ID: 30959185 [TBL] [Abstract][Full Text] [Related]