These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 33321668)
41. Multifunctional properties of organic-inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides for ocular drug delivery. Xu T; Zhang J; Chi H; Cao F Acta Biomater; 2016 May; 36():152-63. PubMed ID: 26940970 [TBL] [Abstract][Full Text] [Related]
42. Methotrexate-loaded nitrogen-doped graphene quantum dots nanocarriers as an efficient anticancer drug delivery system. Khodadadei F; Safarian S; Ghanbari N Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():280-285. PubMed ID: 28629019 [TBL] [Abstract][Full Text] [Related]
43. Multifunctional Nanocomposites Based on Liposomes and Layered Double Hydroxides Conjugated with Glycylsarcosine for Efficient Topical Drug Delivery to the Posterior Segment of the Eye. Gu Y; Xu C; Wang Y; Zhou X; Fang L; Cao F Mol Pharm; 2019 Jul; 16(7):2845-2857. PubMed ID: 31244219 [TBL] [Abstract][Full Text] [Related]
44. Facile preparation of pH-sensitive chitosan microspheres for delivery of curcumin; characterization, drug release kinetics and evaluation of anticancer activity. Pooresmaeil M; Namazi H Int J Biol Macromol; 2020 Nov; 162():501-511. PubMed ID: 32574741 [TBL] [Abstract][Full Text] [Related]
45. Biodegradable polyurethane micelles with pH and reduction responsive properties for intracellular drug delivery. Guan Y; Su Y; Zhao L; Meng F; Wang Q; Yao Y; Luo J Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1221-1230. PubMed ID: 28415410 [TBL] [Abstract][Full Text] [Related]
46. Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel. Xu Z; Wang S; Li Y; Wang M; Shi P; Huang X ACS Appl Mater Interfaces; 2014 Oct; 6(19):17268-76. PubMed ID: 25216036 [TBL] [Abstract][Full Text] [Related]
47. Fabrication of chlorambucil loaded graphene- oxide nanocarrier and its application for improved antitumor activity. Singh G; Nenavathu BP; Imtiyaz K; Moshahid A Rizvi M Biomed Pharmacother; 2020 Sep; 129():110443. PubMed ID: 32593130 [TBL] [Abstract][Full Text] [Related]
48. Nanoscale Metal-Organic-Frameworks Coated by Biodegradable Organosilica for pH and Redox Dual Responsive Drug Release and High-Performance Anticancer Therapy. Ren SZ; Zhu D; Zhu XH; Wang B; Yang YS; Sun WX; Wang XM; Lv PC; Wang ZC; Zhu HL ACS Appl Mater Interfaces; 2019 Jun; 11(23):20678-20688. PubMed ID: 31081332 [TBL] [Abstract][Full Text] [Related]
49. Injectable pH and redox dual responsive hydrogels based on self-assembled peptides for anti-tumor drug delivery. Zhu Y; Wang L; Li Y; Huang Z; Luo S; He Y; Han H; Raza F; Wu J; Ge L Biomater Sci; 2020 Oct; 8(19):5415-5426. PubMed ID: 32996920 [TBL] [Abstract][Full Text] [Related]
50. Charge-Convertible Carbon Dots for Imaging-Guided Drug Delivery with Enhanced in Vivo Cancer Therapeutic Efficiency. Feng T; Ai X; An G; Yang P; Zhao Y ACS Nano; 2016 Apr; 10(4):4410-20. PubMed ID: 26997431 [TBL] [Abstract][Full Text] [Related]
51. Dual Drugs Anticancer Nanoformulation using Graphene Oxide-PEG as Nanocarrier for Protocatechuic Acid and Chlorogenic Acid. Bullo S; Buskaran K; Baby R; Dorniani D; Fakurazi S; Hussein MZ Pharm Res; 2019 Apr; 36(6):91. PubMed ID: 31020429 [TBL] [Abstract][Full Text] [Related]
52. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo. Zhong Y; Goltsche K; Cheng L; Xie F; Meng F; Deng C; Zhong Z; Haag R Biomaterials; 2016 Apr; 84():250-261. PubMed ID: 26851390 [TBL] [Abstract][Full Text] [Related]
53. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel. Yang X; Cai X; Yu A; Xi Y; Zhai G J Colloid Interface Sci; 2017 Jun; 496():311-326. PubMed ID: 28237749 [TBL] [Abstract][Full Text] [Related]
54. Well-defined polymer-drug conjugate engineered with redox and pH-sensitive release mechanism for efficient delivery of paclitaxel. Lv S; Tang Z; Zhang D; Song W; Li M; Lin J; Liu H; Chen X J Control Release; 2014 Nov; 194():220-7. PubMed ID: 25220162 [TBL] [Abstract][Full Text] [Related]
55. Targeted Nanostructured Lipid Carriers for Delivery of Paclitaxel to Cancer Cells: Preparation, Characterization, and Cell Toxicity. Rezazadeh M; Emami J; Hassanzadeh F; Sadeghi H; Rostami M; Mohammadkhani H Curr Drug Deliv; 2017; 14(8):1189-1200. PubMed ID: 28472908 [TBL] [Abstract][Full Text] [Related]
56. Drug-loaded pH-responsive polymeric micelles: Simulations and experiments of micelle formation, drug loading and drug release. Li Q; Yao W; Yu X; Zhang B; Dong J; Jin Y Colloids Surf B Biointerfaces; 2017 Oct; 158():709-716. PubMed ID: 28778054 [TBL] [Abstract][Full Text] [Related]
57. Reversing multi-drug tumor resistance to Paclitaxel by well-defined pH-sensitive amphiphilic polypeptide block copolymers via induction of lysosomal membrane permeabilization. Mostoufi H; Yousefi G; Tamaddon AM; Firuzi O Colloids Surf B Biointerfaces; 2019 Feb; 174():17-27. PubMed ID: 30408674 [TBL] [Abstract][Full Text] [Related]
58. Paclitaxel delivered by CD44 receptor-targeting and endosomal pH sensitive dual functionalized hyaluronic acid micelles for multidrug resistance reversion. Liu Y; Zhou C; Wei S; Yang T; Lan Y; Cao A; Yang J; Hou Y Colloids Surf B Biointerfaces; 2018 Oct; 170():330-340. PubMed ID: 29936386 [TBL] [Abstract][Full Text] [Related]