BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33321672)

  • 1. Collagen maturity and mineralization in mesenchymal stem cells cultured on the hydroxyapatite-based bone scaffold analyzed by ATR-FTIR spectroscopic imaging.
    Gieroba B; Przekora A; Kalisz G; Kazimierczak P; Song CL; Wojcik M; Ginalska G; Kazarian SG; Sroka-Bartnicka A
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111634. PubMed ID: 33321672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the potential of chitosan/β-1,3-glucan/hydroxyapatite material as a scaffold for living bone graft production in vitro by comparison of ADSC and BMDSC behaviour on its surface.
    Przekora A; Vandrovcova M; Travnickova M; Pajorova J; Molitor M; Ginalska G; Bacakova L
    Biomed Mater; 2017 Feb; 12(1):015030. PubMed ID: 28054934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical changes of the chitosan/β-1,3-glucan/hydroxyapatite biocomposite caused by mesenchymal stem cells cultured on its surface in vitro.
    Kalisz G; Przekora A; Kazimierczak P; Gieroba B; Lewalska-Graczyk A; Pieta IS; Holdynski M; Ginalska G; Sroka-Bartnicka A
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 251():119439. PubMed ID: 33461139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Raman Spectroscopic Imaging to Assess the Structural Changes at Cell-Scaffold Interface.
    Kalisz G; Przekora A; Kazimierczak P; Gieroba B; Jedrek M; Grudzinski W; Gruszecki WI; Ginalska G; Sroka-Bartnicka A
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33418952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological Response to Macroporous Chitosan-Agarose Bone Scaffolds Comprising Mg- and Zn-Doped Nano-Hydroxyapatite.
    Kazimierczak P; Kolmas J; Przekora A
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31390753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro mineralization of human mesenchymal stem cells on three-dimensional type I collagen versus PLGA scaffolds: a comparative analysis.
    Kruger EA; Im DD; Bischoff DS; Pereira CT; Huang W; Rudkin GH; Yamaguchi DT; Miller TA
    Plast Reconstr Surg; 2011 Jun; 127(6):2301-2311. PubMed ID: 21617464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging.
    Sroka-Bartnicka A; Kimber JA; Borkowski L; Pawlowska M; Polkowska I; Kalisz G; Belcarz A; Jozwiak K; Ginalska G; Kazarian SG
    Anal Bioanal Chem; 2015 Oct; 407(25):7775-85. PubMed ID: 26277184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of human hair keratin/jellyfish collagen/eggshell-derived hydroxyapatite osteoinductive biocomposite scaffolds for bone tissue engineering: From waste to regenerative medicine products.
    Arslan YE; Sezgin Arslan T; Derkus B; Emregul E; Emregul KC
    Colloids Surf B Biointerfaces; 2017 Jun; 154():160-170. PubMed ID: 28334693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells.
    Kazimierczak P; Benko A; Nocun M; Przekora A
    Int J Nanomedicine; 2019; 14():6615-6630. PubMed ID: 31695360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds.
    Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM
    Biomed Mater Eng; 2017; 28(6):671-685. PubMed ID: 29171970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural transformation of synthetic hydroxyapatite under simulated in vivo conditions studied with ATR-FTIR spectroscopic imaging.
    Sroka-Bartnicka A; Borkowski L; Ginalska G; Ślósarczyk A; Kazarian SG
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():155-161. PubMed ID: 27513683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human adipose-derived mesenchymal stem cells seeded into a collagen-hydroxyapatite scaffold promote bone augmentation after implantation in the mouse.
    Calabrese G; Giuffrida R; Forte S; Fabbi C; Figallo E; Salvatorelli L; Memeo L; Parenti R; Gulisano M; Gulino R
    Sci Rep; 2017 Aug; 7(1):7110. PubMed ID: 28769083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A BMSCs-laden quercetin/duck's feet collagen/hydroxyapatite sponge for enhanced bone regeneration.
    Song JE; Tian J; Kook YJ; Thangavelu M; Choi JH; Khang G
    J Biomed Mater Res A; 2020 Mar; 108(3):784-794. PubMed ID: 31794132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biphasic organo-bioceramic fibrous composite as a biomimetic extracellular matrix for bone tissue regeneration.
    Kumar S; Stokes JA; Dean D; Rogers C; Nyairo E; Thomas V; Mishra MK
    Front Biosci (Elite Ed); 2017 Mar; 9(2):192-203. PubMed ID: 28199184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering.
    Ambre AH; Katti DR; Katti KS
    J Biomed Mater Res A; 2015 Jun; 103(6):2077-101. PubMed ID: 25331212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Periodontal regeneration with stem cells-seeded collagen-hydroxyapatite scaffold.
    Liu Z; Yin X; Ye Q; He W; Ge M; Zhou X; Hu J; Zou S
    J Biomater Appl; 2016 Jul; 31(1):121-31. PubMed ID: 27009932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of human ovarian follicular fluid derived mesenchymal stem cells in chitosan/PCL/Zn scaffold for bone tissue regeneration.
    Chandramohan Y; Jeganathan K; Sivanesan S; Koka P; Amritha TMS; Vimalraj S; Dhanasekaran A
    Life Sci; 2021 Jan; 264():118502. PubMed ID: 33031825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering.
    Nandakumar A; Barradas A; de Boer J; Moroni L; van Blitterswijk C; Habibovic P
    Biomatter; 2013; 3(2):. PubMed ID: 23507924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalization of porous BCP scaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering.
    Kim B; Ventura R; Lee BT
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1256-e1267. PubMed ID: 28752541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-ceramic composite scaffolds for bioreactor-based bone engineering.
    Lv Q; Deng M; Ulery BD; Nair LS; Laurencin CT
    Clin Orthop Relat Res; 2013 Aug; 471(8):2422-33. PubMed ID: 23436161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.