BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33321770)

  • 1. Tensile Behavior of High-Strength, Strain-Hardening Cement-Based Composites (HS-SHCC) Reinforced with Continuous Textile Made of Ultra-High-Molecular-Weight Polyethylene.
    Gong T; Curosu I; Liebold F; Vo DMP; Zierold K; Maas HG; Cherif C; Mechtcherine V
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33321770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic Finite Element Modeling of Textile Reinforced SHCC Subjected to Uniaxial Tension.
    Curosu I; Omara A; Ahmed AH; Mechtcherine V
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Mechanical and Crack-Healing Properties of PE-PVA Hybrid Fiber-Reinforced SHCCs in Natural and Underwater Conditions.
    Park SE; Nguyễn HH; Choi JI; Lee BY; Kim YY
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ductility Variation and Improvement of Strain-Hardening Cementitious Composites in Structural Utilization.
    Diao P; Ling Z; Bai Y; Lu W; Zhang Y
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature and Strain Rate Related Deformation Behavior of UHMWPE Fiber-Reinforced Composites.
    Yi C; Xu J; Tian L; Zhang C
    Polymers (Basel); 2024 Apr; 16(9):. PubMed ID: 38732719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tensile Behaviors of Lap-Spliced Carbon Fiber-Textile Reinforced Mortar Composites Exposed to High Temperature.
    Truong GT; Park SH; Choi KK
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31075851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tensile and Flexural Behaviors of Basalt Textile Reinforced Sprayed Glass Fiber Mortar Composites.
    Ates AO; Durmuş G; Ilki A
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing and Testing of Strain-Hardening Cement-Based Composites (SHCC) in the Context of 3D-Printing.
    Ogura H; Nerella VN; Mechtcherine V
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30087296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance Review of Strain-Hardening Cementitious Composites in Structural Applications.
    Xue B; Xu B; Lu W; Zhang Y
    Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Experimental Investigation of the Behavior of Strain-Hardening Cement-Based Composites (SHCC) under Impact Compression and Shear Loading.
    A Heravi A; Mosig O; Tawfik A; Curbach M; Mechtcherine V
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33053783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensile Experiments and Numerical Analysis of Textile-Reinforced Lightweight Engineered Cementitious Composites.
    Chen M; Deng X; Guo R; Fu C; Zhang J
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the Tensile Behavior of Fiber-Reinforced Strain-Hardening Cement-Based Composites: A Review.
    Ribeiro PO; Krahl PA; Carrazedo R; Bernardo LFA
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Properties of Hybrid PVA-Natural Curaua Fiber Composites.
    Zukowski B; Dos Santos Mendonça YG; Tavares IJK; Toledo Filho RD
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Study on the Axial Tensile Properties of FRP Grid-Reinforced ECC Composites.
    Deng L; Lei L; Lai S; Liao L; Zhou Z
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative study of the influence of cement matrix impregnation on yarn pullout strength using combined confocal microscopy and double resin impregnation.
    Slama AC; Agniel R; Gallias JL; Fiorio B
    J Microsc; 2022 May; 286(2):134-140. PubMed ID: 35098537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uniaxial Tensile Behavior of Carbon Textile Reinforced Mortar.
    Zhou F; Liu H; Du Y; Liu L; Zhu D; Pan W
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30691009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of self-reinforced ultra-high-molecular-weight polyethylene composites.
    Deng M; Shalaby SW
    Biomaterials; 1997 May; 18(9):645-55. PubMed ID: 9151996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Polymer Complex.
    Jerkovic I; Koncar V; Grancaric AM
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 28994733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of triaxial braid denier on ribbon-based fiber reinforced dental composites.
    Karbhari VM; Wang Q
    Dent Mater; 2007 Aug; 23(8):969-76. PubMed ID: 17092553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tensile and Flexural Properties of Silica Nanoparticles Modified Unidirectional Kenaf and Hybrid Glass/Kenaf Epoxy Composites.
    Sapiai N; Jumahat A; Jawaid M; Midani M; Khan A
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33217951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.