BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 33321771)

  • 21. Plasma-Enhanced Chemical Vapor Deposition of Two-Dimensional Materials for Applications.
    Yi K; Liu D; Chen X; Yang J; Wei D; Liu Y; Wei D
    Acc Chem Res; 2021 Feb; 54(4):1011-1022. PubMed ID: 33535000
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polymer-Compatible Low-Temperature Plasma-Enhanced Chemical Vapor Deposition of Graphene on Electroplated Cu for Flexible Hybrid Electronics.
    Lu CH; Leu CM; Yeh NC
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):41323-41329. PubMed ID: 34470108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct Synthesis of Graphene Dendrites on SiO
    Li Y; Li Z; Li Q; Tian M; Li C; Sun L; Wang J; Zhao X; Xu S; Yu F
    Nanoscale Res Lett; 2020 Jan; 15(1):16. PubMed ID: 31953629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conversion of Carbon Dioxide into Chemical Vapor Deposited Graphene with Controllable Number of Layers via Hydrogen Plasma Pre-Treatment.
    Seekaew Y; Tammanoon N; Tuantranont A; Lomas T; Wisitsoraat A; Wongchoosuk C
    Membranes (Basel); 2022 Aug; 12(8):. PubMed ID: 36005711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electronic Structure of Nitrogen- and Phosphorus-Doped Graphenes Grown by Chemical Vapor Deposition Method.
    Bulusheva LG; Arkhipov VE; Popov KM; Sysoev VI; Makarova AA; Okotrub AV
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32155705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular understanding of the effect of hydrogen on graphene growth by plasma-enhanced chemical vapor deposition.
    Wu S; Huang D; Yu H; Tian S; Malik A; Luo T; Xiong G
    Phys Chem Chem Phys; 2022 May; 24(17):10297-10304. PubMed ID: 35437535
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth of carbon nanowalls on metal-coated substrates via microwave plasma enhanced chemical vapor deposition.
    Lee S; Choi WS
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9174-7. PubMed ID: 25971032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental Investigation on Vertically Oriented Graphene Grown in a Plasma-Enhanced Chemical Vapor Deposition Process.
    Ma Y; Jiang W; Han J; Tong Z; Wang M; Suhr J; Chen X; Xiao L; Jia S; Chae H
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10237-10243. PubMed ID: 30794749
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laser-assisted graphene growth directly on silicon.
    Vishwakarma R; Zhu R; Mewada A; Umeno M
    Nanotechnology; 2021 May; 32(30):. PubMed ID: 33789253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct large-area growth of graphene on silicon for potential ultra-low-friction applications and silicon-based technologies.
    Tseng WS; Chen YC; Hsu CC; Lu CH; Wu CI; Yeh NC
    Nanotechnology; 2020 Aug; 31(33):335602. PubMed ID: 32369779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition.
    Chan SH; Chen SH; Lin WT; Li MC; Lin YC; Kuo CC
    Nanoscale Res Lett; 2013 Jun; 8(1):285. PubMed ID: 23758668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct growth of patterned graphene on SiO2 substrates without the use of catalysts or lithography.
    Kim YS; Joo K; Jerng SK; Lee JH; Yoon E; Chun SH
    Nanoscale; 2014 Sep; 6(17):10100-5. PubMed ID: 25034505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transfer-Free, Large-Scale Growth of High-Quality Graphene on Insulating Substrate by Physical Contact of Copper Foil.
    Song I; Park Y; Cho H; Choi HC
    Angew Chem Int Ed Engl; 2018 Nov; 57(47):15374-15378. PubMed ID: 30267452
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition.
    Malesevic A; Vitchev R; Schouteden K; Volodin A; Zhang L; Tendeloo GV; Vanhulsel A; Haesendonck CV
    Nanotechnology; 2008 Jul; 19(30):305604. PubMed ID: 21828766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid opto-chemical doping in Ag nanoparticle-decorated monolayer graphene grown by chemical vapor deposition probed by Raman spectroscopy.
    Maiti R; Haldar S; Majumdar D; Singha A; Ray SK
    Nanotechnology; 2017 Feb; 28(7):075707. PubMed ID: 27976628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Few-layer graphene direct deposition on Ni and Cu foil by cold-wall chemical vapor deposition.
    Chang QH; Guo GL; Wang T; Ji LC; Huang L; Ling B; Yang HF
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6516-20. PubMed ID: 22962776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene Film Growth on Silicon Carbide by Hot Filament Chemical Vapor Deposition.
    Rodríguez-Villanueva S; Mendoza F; Weiner BR; Morell G
    Nanomaterials (Basel); 2022 Sep; 12(17):. PubMed ID: 36080070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultraviolet photoconductive devices with an n-GaN nanorod-graphene hybrid structure synthesized by metal-organic chemical vapor deposition.
    Kang S; Mandal A; Chu JH; Park JH; Kwon SY; Lee CR
    Sci Rep; 2015 Jun; 5():10808. PubMed ID: 26028318
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Initial stages of few-layer graphene growth by microwave plasma-enhanced chemical vapour deposition.
    Vitchev R; Malesevic A; Petrov RH; Kemps R; Mertens M; Vanhulsel A; Van Haesendonck C
    Nanotechnology; 2010 Mar; 21(9):095602. PubMed ID: 20110582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A solid-state nuclear magnetic resonance study of post-plasma reactions in organosilicone microwave plasma-enhanced chemical vapor deposition (PECVD) coatings.
    Hall CJ; Ponnusamy T; Murphy PJ; Lindberg M; Antzutkin ON; Griesser HJ
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8353-62. PubMed ID: 24791938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.