These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 33321992)
21. Quantitative proteomic analysis of extracellular vesicle subgroups isolated by an optimized method combining polymer-based precipitation and size exclusion chromatography. Martínez-Greene JA; Hernández-Ortega K; Quiroz-Baez R; Resendis-Antonio O; Pichardo-Casas I; Sinclair DA; Budnik B; Hidalgo-Miranda A; Uribe-Querol E; Ramos-Godínez MDP; Martínez-Martínez E J Extracell Vesicles; 2021 Apr; 10(6):e12087. PubMed ID: 33936570 [TBL] [Abstract][Full Text] [Related]
22. Framework for rapid comparison of extracellular vesicle isolation methods. Ter-Ovanesyan D; Norman M; Lazarovits R; Trieu W; Lee JH; Church GM; Walt DR Elife; 2021 Nov; 10():. PubMed ID: 34783650 [TBL] [Abstract][Full Text] [Related]
23. Identification of potential saliva and tear biomarkers in primary Sjögren's syndrome, utilising the extraction of extracellular vesicles and proteomics analysis. Aqrawi LA; Galtung HK; Vestad B; Øvstebø R; Thiede B; Rusthen S; Young A; Guerreiro EM; Utheim TP; Chen X; Utheim ØA; Palm Ø; Jensen JL Arthritis Res Ther; 2017 Jan; 19(1):14. PubMed ID: 28122643 [TBL] [Abstract][Full Text] [Related]
24. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer's disease. Pulliam L; Sun B; Mustapic M; Chawla S; Kapogiannis D J Neurovirol; 2019 Oct; 25(5):702-709. PubMed ID: 30610738 [TBL] [Abstract][Full Text] [Related]
25. Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. Stranska R; Gysbrechts L; Wouters J; Vermeersch P; Bloch K; Dierickx D; Andrei G; Snoeck R J Transl Med; 2018 Jan; 16(1):1. PubMed ID: 29316942 [TBL] [Abstract][Full Text] [Related]
26. Central nervous system-derived extracellular vesicles: the next generation of neural circulating biomarkers? Bravo-Miana RDC; Arizaga-Echebarria JK; Otaegui D Transl Neurodegener; 2024 Jun; 13(1):32. PubMed ID: 38898538 [TBL] [Abstract][Full Text] [Related]
27. Severe Traumatic Brain Injury Induces Early Changes in the Physical Properties and Protein Composition of Intracranial Extracellular Vesicles. Kuharić J; Grabušić K; Tokmadžić VS; Štifter S; Tulić K; Shevchuk O; Lučin P; Šustić A J Neurotrauma; 2019 Jan; 36(2):190-200. PubMed ID: 29690821 [TBL] [Abstract][Full Text] [Related]
28. Brain-derived extracellular vesicles: Potential diagnostic biomarkers for central nervous system diseases. Xu X; Iqbal Z; Xu L; Wen C; Duan L; Xia J; Yang N; Zhang Y; Liang Y Psychiatry Clin Neurosci; 2024 Feb; 78(2):83-96. PubMed ID: 37877617 [TBL] [Abstract][Full Text] [Related]
29. Recommendations for reproducibility of cerebrospinal fluid extracellular vesicle studies. Sandau US; Magaña SM; Costa J; Nolan JP; Ikezu T; Vella LJ; Jackson HK; Moreira LR; Palacio PL; Hill AF; Quinn JF; Van Keuren-Jensen KR; McFarland TJ; Palade J; Sribnick EA; Su H; Vekrellis K; Coyle B; Yang Y; Falcón-Perez JM; Nieuwland R; Saugstad JA; J Extracell Vesicles; 2024 Jan; 13(1):e12397. PubMed ID: 38158550 [TBL] [Abstract][Full Text] [Related]
30. Quality Assessment and Comparison of Plasma-Derived Extracellular Vesicles Separated by Three Commercial Kits for Prostate Cancer Diagnosis. Pang B; Zhu Y; Ni J; Ruan J; Thompson J; Malouf D; Bucci J; Graham P; Li Y Int J Nanomedicine; 2020; 15():10241-10256. PubMed ID: 33364756 [TBL] [Abstract][Full Text] [Related]
32. Analyzing Cerebrospinal Fluid Proteomes to Characterize Central Nervous System Disorders: A Highly Automated Mass Spectrometry-Based Pipeline for Biomarker Discovery. Núñez Galindo A; Macron C; Cominetti O; Dayon L Methods Mol Biol; 2019; 1959():89-112. PubMed ID: 30852817 [TBL] [Abstract][Full Text] [Related]
33. Extracellular Vesicle Separation Techniques Impact Results from Human Blood Samples: Considerations for Diagnostic Applications. Tzaridis T; Bachurski D; Liu S; Surmann K; Babatz F; Gesell Salazar M; Völker U; Hallek M; Herrlinger U; Vorberg I; Coch C; Reiners KS; Hartmann G Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502122 [TBL] [Abstract][Full Text] [Related]
34. Enrichment of plasma extracellular vesicles for reliable quantification of their size and concentration for biomarker discovery. Holcar M; Ferdin J; Sitar S; Tušek-Žnidarič M; Dolžan V; Plemenitaš A; Žagar E; Lenassi M Sci Rep; 2020 Dec; 10(1):21346. PubMed ID: 33288809 [TBL] [Abstract][Full Text] [Related]
35. Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. Hurwitz SN; Rider MA; Bundy JL; Liu X; Singh RK; Meckes DG Oncotarget; 2016 Dec; 7(52):86999-87015. PubMed ID: 27894104 [TBL] [Abstract][Full Text] [Related]
36. A Versatile Workflow for Cerebrospinal Fluid Proteomic Analysis with Mass Spectrometry: A Matter of Choice between Deep Coverage and Sample Throughput. Macron C; Núñez Galindo A; Cominetti O; Dayon L Methods Mol Biol; 2019; 2044():129-154. PubMed ID: 31432411 [TBL] [Abstract][Full Text] [Related]
37. Proteomic analysis of cerebrospinal fluid discriminates malignant and nonmalignant disease of the central nervous system and identifies specific protein markers. Khwaja FW; Nolen JD; Mendrinos SE; Lewis MM; Olson JJ; Pohl J; Van Meir EG; Ritchie JC; Brat DJ Proteomics; 2006 Dec; 6(23):6277-87. PubMed ID: 17078017 [TBL] [Abstract][Full Text] [Related]
38. Rapid Isolation of Extracellular Vesicles from Blood Plasma with Size-Exclusion Chromatography Followed by Mass Spectrometry-Based Proteomic Profiling. Kreimer S; Ivanov AR Methods Mol Biol; 2017; 1660():295-302. PubMed ID: 28828666 [TBL] [Abstract][Full Text] [Related]
39. Comparative analysis of extracellular vesicle isolation methods from human AML bone marrow cells and AML cell lines. Lang JB; Buck MC; Rivière J; Stambouli O; Sachenbacher K; Choudhary P; Dietz H; Giebel B; Bassermann F; Oostendorp RAJ; Götze KS; Hecker JS Front Oncol; 2022; 12():949261. PubMed ID: 36263223 [TBL] [Abstract][Full Text] [Related]
40. Determination of Cerebrospinal Fluid Proteome Variations by Isobaric Labeling Coupled with Strong Cation-Exchange Chromatography and Tandem Mass Spectrometry. Lachén-Montes M; González-Morales A; Fernández-Irigoyen J; Santamaría E Methods Mol Biol; 2019; 2044():155-168. PubMed ID: 31432412 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]