These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 33322032)
41. Green and efficient extraction of four bioactive flavonoids from Pollen Typhae by ultrasound-assisted deep eutectic solvents extraction. Meng Z; Zhao J; Duan H; Guan Y; Zhao L J Pharm Biomed Anal; 2018 Nov; 161():246-253. PubMed ID: 30172879 [TBL] [Abstract][Full Text] [Related]
42. Green techniques in comparison to conventional ones in the extraction of Amaryllidaceae alkaloids: Best solvents selection and parameters optimization. Takla SS; Shawky E; Hammoda HM; Darwish FA J Chromatogr A; 2018 Sep; 1567():99-110. PubMed ID: 30033169 [TBL] [Abstract][Full Text] [Related]
43. Deep eutectic solvent-based dispersive liquid-liquid micro-extraction of pesticides in food samples. Musarurwa H; Tavengwa NT Food Chem; 2021 Apr; 342():127943. PubMed ID: 33041169 [TBL] [Abstract][Full Text] [Related]
44. p-Toluenesulfonic Acid-based Deep Eutectic Solvent as Transesterification Catalyst for Biodiesel Production. Liu W; Wang F J Oleo Sci; 2018 Sep; 67(9):1163-1169. PubMed ID: 30111675 [TBL] [Abstract][Full Text] [Related]
45. Enabling Sustainable Chemistry with Ionic Liquids and Deep Eutectic Solvents: A Fad or the Future? Quintana AA; Sztapka AM; Santos Ebinuma VC; Agatemor C Angew Chem Int Ed Engl; 2022 Sep; 61(37):e202205609. PubMed ID: 35789078 [TBL] [Abstract][Full Text] [Related]
46. Enhanced and green extraction polyphenols and furanocoumarins from Fig (Ficus carica L.) leaves using deep eutectic solvents. Wang T; Jiao J; Gai QY; Wang P; Guo N; Niu LL; Fu YJ J Pharm Biomed Anal; 2017 Oct; 145():339-345. PubMed ID: 28710995 [TBL] [Abstract][Full Text] [Related]
47. Development and applications of deep eutectic solvent derived functional materials in chromatographic separation. Li L; Liu Y; Wang Z; Yang L; Liu H J Sep Sci; 2021 Mar; 44(6):1098-1121. PubMed ID: 32627358 [TBL] [Abstract][Full Text] [Related]
48. From green chemistry to nature: The versatile role of low transition temperature mixtures. Durand E; Lecomte J; Villeneuve P Biochimie; 2016 Jan; 120():119-23. PubMed ID: 26391220 [TBL] [Abstract][Full Text] [Related]
49. The perspectives of natural deep eutectic solvents in agri-food sector. Mišan A; Nađpal J; Stupar A; Pojić M; Mandić A; Verpoorte R; Choi YH Crit Rev Food Sci Nutr; 2020; 60(15):2564-2592. PubMed ID: 31407921 [TBL] [Abstract][Full Text] [Related]
50. Towards a Greener Approach for Biomass Valorization: Integration of Supercritical Fluid and Deep Eutectic Solvents. Vladić J; Jakovljević Kovač M; Pavić V; Jokić S; Simić S; Paiva A; Jerković I; Duarte AR Antibiotics (Basel); 2023 Jun; 12(6):. PubMed ID: 37370350 [TBL] [Abstract][Full Text] [Related]
51. Applications of deep eutectic solvents to quantitative analyses of pharmaceuticals and pesticides in various matrices: a brief review. Lee J; Kim H; Kang S; Baik N; Hwang I; Chung DS Arch Pharm Res; 2020 Sep; 43(9):900-919. PubMed ID: 32918704 [TBL] [Abstract][Full Text] [Related]
52. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. Ruesgas-Ramón M; Figueroa-Espinoza MC; Durand E J Agric Food Chem; 2017 May; 65(18):3591-3601. PubMed ID: 28414232 [TBL] [Abstract][Full Text] [Related]
53. Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein. Li N; Wang Y; Xu K; Huang Y; Wen Q; Ding X Talanta; 2016 May; 152():23-32. PubMed ID: 26992491 [TBL] [Abstract][Full Text] [Related]
54. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. Jablonský M; Škulcová A; Malvis A; Šima J J Biotechnol; 2018 Sep; 282():46-66. PubMed ID: 29969642 [TBL] [Abstract][Full Text] [Related]
55. The application of green solvent in a biorefinery using lignocellulosic biomass as a feedstock. New EK; Tnah SK; Voon KS; Yong KJ; Procentese A; Yee Shak KP; Subramonian W; Cheng CK; Wu TY J Environ Manage; 2022 Apr; 307():114385. PubMed ID: 35104699 [TBL] [Abstract][Full Text] [Related]
56. Renewable chemicals: dehydroxylation of glycerol and polyols. ten Dam J; Hanefeld U ChemSusChem; 2011 Aug; 4(8):1017-34. PubMed ID: 21887771 [TBL] [Abstract][Full Text] [Related]
57. Recovery of bioactive molecules from chestnut (Castanea sativa Mill.) by-products through extraction by different solvents. Vella FM; Laratta B; La Cara F; Morana A Nat Prod Res; 2018 May; 32(9):1022-1032. PubMed ID: 28920445 [TBL] [Abstract][Full Text] [Related]
58. Green Extraction of Polyphenols via Deep Eutectic Solvents and Assisted Technologies from Agri-Food By-Products. Zhou M; Fakayode OA; Li H Molecules; 2023 Sep; 28(19):. PubMed ID: 37836694 [TBL] [Abstract][Full Text] [Related]
59. An Expeditious and Greener Synthesis of 2-Aminoimidazoles in Deep Eutectic Solvents. Capua M; Perrone S; Perna FM; Vitale P; Troisi L; Salomone A; Capriati V Molecules; 2016 Jul; 21(7):. PubMed ID: 27438810 [TBL] [Abstract][Full Text] [Related]
60. Enhanced and green extraction of bioactive compounds from Lippia citriodora by tailor-made natural deep eutectic solvents. Ivanović M; Alañón ME; Arráez-Román D; Segura-Carretero A Food Res Int; 2018 Sep; 111():67-76. PubMed ID: 30007731 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]