BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33322066)

  • 41. Differentiated human adipose-derived stromal cells exhibit the phenotypic and functional characteristics of mature Schwann cells through a modified approach.
    Kang Y; Liu Y; Liu Z; Ren S; Xiong H; Chen J; Duscher D; Machens HG; Liu W; Guo G; Zhan P; Chen H; Chen Z
    Cytotherapy; 2019 Sep; 21(9):987-1003. PubMed ID: 31351800
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tonsil-Derived Mesenchymal Stem Cells Differentiate into a Schwann Cell Phenotype and Promote Peripheral Nerve Regeneration.
    Jung N; Park S; Choi Y; Park JW; Hong YB; Park HH; Yu Y; Kwak G; Kim HS; Ryu KH; Kim JK; Jo I; Choi BO; Jung SC
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27834852
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coculture of Primary Motor Neurons and Schwann Cells as a Model for In Vitro Myelination.
    Hyung S; Yoon Lee B; Park JC; Kim J; Hur EM; Francis Suh JK
    Sci Rep; 2015 Oct; 5():15122. PubMed ID: 26456300
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PDGF, NT-3 and IGF-2 in combination induced transdifferentiation of muscle-derived stem cells into Schwann cell-like cells.
    Tang Y; He H; Cheng N; Song Y; Ding W; Zhang Y; Zhang W; Zhang J; Peng H; Jiang H
    PLoS One; 2014; 9(1):e73402. PubMed ID: 24454677
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Glial differentiation of human inferior turbinate-derived stem cells: a new source of cells for nerve repair.
    Li Y; Sheng Y; Liang J; Ren X; Cheng Y
    Neuroreport; 2017 Mar; 28(5):235-241. PubMed ID: 28169963
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new method for Schwann-like cell differentiation of adipose derived stem cells.
    Liu Y; Zhang Z; Qin Y; Wu H; Lv Q; Chen X; Deng W
    Neurosci Lett; 2013 Sep; 551():79-83. PubMed ID: 23880021
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optogenetic stimulation promotes Schwann cell proliferation, differentiation, and myelination in vitro.
    Jung K; Park JH; Kim SY; Jeon NL; Cho SR; Hyung S
    Sci Rep; 2019 Mar; 9(1):3487. PubMed ID: 30837563
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differentiation of human amniotic epithelial cells into Schwann‑like cells via indirect co‑culture with Schwann cells in vitro.
    Zhu S; Li J; Zhu Q; Dai T; He B; Zhou X; Xiang J; Liu X
    Mol Med Rep; 2015 Feb; 11(2):1221-7. PubMed ID: 25374158
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamic expression of SMAD3 is critical in osteoblast differentiation of PDMCs.
    Lin HT; Chen SK; Guo JW; Su IC; Huang CJ; Chien CC; Chang CJ
    Int J Mol Med; 2019 Feb; 43(2):1085-1093. PubMed ID: 30483761
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of nestin-expressing multipotent stem cells in the tongue fungiform papilla and vibrissa hair follicle.
    Mii S; Amoh Y; Katsuoka K; Hoffman RM
    J Cell Biochem; 2014 Jun; 115(6):1070-6. PubMed ID: 24142339
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phenotypic and Functional Characteristics of Human Schwann Cells as Revealed by Cell-Based Assays and RNA-SEQ.
    Monje PV; Sant D; Wang G
    Mol Neurobiol; 2018 Aug; 55(8):6637-6660. PubMed ID: 29327207
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pax3: a paired domain gene as a regulator in PNS myelination.
    Kioussi C; Gross MK; Gruss P
    Neuron; 1995 Sep; 15(3):553-62. PubMed ID: 7546735
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The key components of Schwann cell-like differentiation medium and their effects on gene expression pattern of adipose-derived stem cells.
    Orbay H; Little CJ; Lankford L; Olson CA; Sahar DE
    Ann Plast Surg; 2015 May; 74(5):584-8. PubMed ID: 25643192
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of leukemia inhibitory factor on the myelinogenic ability of Schwann-like cells induced from human adipose-derived stem cells.
    Razavi S; Mardani M; Kazemi M; Esfandiari E; Narimani M; Esmaeili A; Ahmadi N
    Cell Mol Neurobiol; 2013 Mar; 33(2):283-9. PubMed ID: 23212292
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Constitutive neuregulin-1/ErbB signaling contributes to human vestibular schwannoma proliferation.
    Hansen MR; Roehm PC; Chatterjee P; Green SH
    Glia; 2006 Apr; 53(6):593-600. PubMed ID: 16432850
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Modified Approach to Inducing Bone Marrow Stromal Cells to Differentiate into Cells with Mature Schwann Cell Phenotypes.
    Liu Y; Chen J; Liu W; Lu X; Liu Z; Zhao X; Li G; Chen Z
    Stem Cells Dev; 2016 Feb; 25(4):347-59. PubMed ID: 26670188
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Connexin 32 increases the proliferative response of Schwann cells to neuregulin-1 (Nrg1).
    Freidin M; Asche S; Bargiello TA; Bennett MV; Abrams CK
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3567-72. PubMed ID: 19218461
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Notch signalling pathway and miRNA regulation play important roles in the differentiation of Schwann cells from adipose-derived stem cells.
    Yang L; Shen XM; Wang ZF; Li K; Wang W
    Lab Invest; 2022 Mar; 102(3):320-328. PubMed ID: 34795395
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low-intensity pulsed ultrasound upregulates pro-myelination indicators of Schwann cells enhanced by co-culture with adipose-derived stem cells.
    Yue Y; Yang X; Zhang L; Xiao X; Nabar NR; Lin Y; Hao L; Zhang D; Huo J; Li J; Cai X; Wang M
    Cell Prolif; 2016 Dec; 49(6):720-728. PubMed ID: 27625295
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma.
    Chang CJ; Yen ML; Chen YC; Chien CC; Huang HI; Bai CH; Yen BL
    Stem Cells; 2006 Nov; 24(11):2466-77. PubMed ID: 17071860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.