These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 33322237)

  • 21. Fabrication of Self-Cleaning and Anti-Icing Durable Surface on Glass.
    Zuo Z; Liao R; Guo C; Zhao X; Zhuang A; Yuan Y
    J Nanosci Nanotechnol; 2017 Jan; 17(1):420-26. PubMed ID: 29624039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid fabrication of anti-corrosion and self-healing superhydrophobic aluminum surfaces through environmentally friendly femtosecond laser processing.
    Yuan G; Liu Y; Ngo CV; Guo C
    Opt Express; 2020 Nov; 28(24):35636-35650. PubMed ID: 33379675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anti-icing superhydrophobic coatings.
    Cao L; Jones AK; Sikka VK; Wu J; Gao D
    Langmuir; 2009 Nov; 25(21):12444-8. PubMed ID: 19799464
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Verification of icephobic/anti-icing properties of a superhydrophobic surface.
    Wang Y; Xue J; Wang Q; Chen Q; Ding J
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Role of the Surface Nano-Roughness on the Wettability Performance of Microstructured Metallic Surface Using Direct Laser Interference Patterning.
    Aguilar-Morales AI; Alamri S; Voisiat B; Kunze T; Lasagni AF
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31461830
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and Experimental Study of Micro/Sub-Micro Porous Copper Coating for Anti-Icing Application.
    Chen J; Fu C; Li J; Tang W; Gao X; Zhang J
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241401
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coral-like silicone nanofilament coatings with extremely low ice adhesion.
    Bottone D; Donadei V; Niemelä H; Koivuluoto H; Seeger S
    Sci Rep; 2021 Oct; 11(1):20427. PubMed ID: 34650120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interdependence of Surface Roughness on Icephobic Performance: A Review.
    Memon H; Wang J; Hou X
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scalable Wettability Modification of Aluminum Surface through Single-Shot Nanosecond Laser Processing.
    Ngo CV; Liu Y; Li W; Yang J; Guo C
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards Rapid Fabrication of Superhydrophobic Surfaces by Multi-Beam Nanostructuring with 40,401 Beams.
    Hauschwitz P; Bičštová R; Brodsky A; Kaplan N; Cimrman M; Huynh J; Brajer J; Rostohar D; Kopeček J; Smrž M; Mocek T
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spontaneous dewetting transitions of droplets during icing & melting cycle.
    Wang L; Tian Z; Jiang G; Luo X; Chen C; Hu X; Zhang H; Zhong M
    Nat Commun; 2022 Jan; 13(1):378. PubMed ID: 35046407
    [TBL] [Abstract][Full Text] [Related]  

  • 32.
    Feng X; Chu J; Tian G; Wang Z; Zhou W; Zhang X; Lian Z
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37919234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anti-Icing or Deicing: Icephobicities of Superhydrophobic Surfaces with Hierarchical Structures.
    Sarshar MA; Song D; Swarctz C; Lee J; Choi CH
    Langmuir; 2018 Nov; 34(46):13821-13827. PubMed ID: 30360623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modus Operandi of Protective and Anti-icing Mechanisms Underlying the Design of Longstanding Outdoor Icephobic Coatings.
    Boinovich LB; Emelyanenko AM; Emelyanenko KA; Modin EB
    ACS Nano; 2019 Apr; 13(4):4335-4346. PubMed ID: 30951285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hierarchical Micro-/Nano-Structures on Polycarbonate via UV Pulsed Laser Processing.
    Mezera M; Alamri S; Hendriks WAPM; Hertwig A; Elert AM; Bonse J; Kunze T; Lasagni AF; Römer GRBE
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32560579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of Water Solidification Concepts in Designing Nano-Textured Anti-Icing Surfaces.
    Gohari B; Russell K; Hejazi V; Rohatgi P
    J Phys Chem B; 2017 Aug; 121(32):7527-7535. PubMed ID: 28658573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reinforced Superhydrophobic Coating on Silicone Rubber for Longstanding Anti-Icing Performance in Severe Conditions.
    Emelyanenko AM; Boinovich LB; Bezdomnikov AA; Chulkova EV; Emelyanenko KA
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24210-24219. PubMed ID: 28657289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    Langmuir; 2015 Oct; 31(39):10799-806. PubMed ID: 26367109
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile fabrication of hierarchical textures for substrate-independent and durable superhydrophobic surfaces.
    He Y; Wang L; Wu T; Wu Z; Chen Y; Yin K
    Nanoscale; 2022 Jul; 14(26):9392-9400. PubMed ID: 35730522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comprehensive Evaluation of Anti-icing Performance and Operational Efficiency of Superhydrophobic Propellers.
    Qiu C; Yang J; Hu C; Chen L
    Langmuir; 2024 May; 40(20):10769-10775. PubMed ID: 38720176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.