These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33322267)

  • 1. CuSO
    Müller D; Knoll C; Gravogl G; Lager D; Welch JM; Eitenberger E; Friedbacher G; Werner A; Artner W; Harasek M; Miletich R; Weinberger P
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33322267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Mg(OH)
    Piperopoulos E; Fazio M; Mastronardo E; Lanza M; Milone C
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33652793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrated Salt/Graphite/Polyelectrolyte Organic-Inorganic Hybrids for Efficient Thermochemical Storage.
    Salviati S; Carosio F; Saracco G; Fina A
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30871047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of 3D carbon nanoadditives on lithium hydroxide monohydrate based composite materials for highly efficient low temperature thermochemical heat storage.
    Li S; Huang H; Li J; Kobayashi N; Osaka Y; He Z; Yuan H
    RSC Adv; 2018 Feb; 8(15):8199-8208. PubMed ID: 35542007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-Situ Reaction Method to Synthetize Constant Solid-State Composites as Phase Change Materials for Thermal Energy Storage.
    Yang B; Liu Y; Ye W; Wang Q; Yang X; Yang D
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hygroscopic additive-modified magnesium sulfate thermochemical material construction and heat transfer numerical simulation for low temperature energy storage.
    Li SJ; Yang XY; Deng LS; Fu YC; Pang MJ; Dong T; Yu YS; Su LN; Jiang S
    RSC Adv; 2022 Mar; 12(14):8792-8803. PubMed ID: 35424807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical and Experimental Studies on the Ability of Intracrystalline Pores of β-La
    Shizume K; Hatada N; Toyoura K; Tai H; Uda T
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52793-52801. PubMed ID: 34699165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-step hydration/dehydration mechanisms of rhombohedral Y
    Shizume K; Hatada N; Yasui S; Uda T
    RSC Adv; 2020 Apr; 10(26):15604-15613. PubMed ID: 35495422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corn Cobs' Biochar as Green Host of Salt Hydrates for Enhancing the Water Sorption Kinetics in Thermochemical Heat Storage Systems.
    Nguyen MH; Zbair M; Dutournié P; Limousy L; Bennici S
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and thermal properties of tetradecanol/graphene aerogel form-stable composite phase change materials.
    Mu B; Li M
    Sci Rep; 2018 Jun; 8(1):8878. PubMed ID: 29891967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver Attached Graphene-Based Aerogel Composite Phase Change Material and the Enhancement of Thermal Conductivity.
    Zhang L; Shi Z; Zhang B; Huang J
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32717918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Redox Temperature of a Co
    Zaki A; Carrasco J; Bielsa D; Faik A
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7010-7020. PubMed ID: 31927944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Al-Modified CuO/Cu
    Xiang D; Gu C; Xu H; Deng J; Zhu P; Xiao G
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):57274-57284. PubMed ID: 34808041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal properties of thermochemical heat storage materials.
    Bird JE; Humphries TD; Paskevicius M; Poupin L; Buckley CE
    Phys Chem Chem Phys; 2020 Feb; 22(8):4617-4625. PubMed ID: 32051979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Study of Hydration/Dehydration Behaviors of Metal Sulfates M
    Shizume K; Hatada N; Uda T
    ACS Omega; 2020 Jun; 5(23):13521-13527. PubMed ID: 32566816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of Rapid and Reversible Water Insertion in Rare Earth Sulfates: A New Process for Thermochemical Heat Storage.
    Hatada N; Shizume K; Uda T
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28585261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of the effective thermal conductivity of packed bed with micro-particles for thermochemical heat storage.
    Pan Z; Zhao C
    Sci Bull (Beijing); 2017 Feb; 62(4):256-265. PubMed ID: 36659354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials.
    Carrillo AJ; González-Aguilar J; Romero M; Coronado JM
    Chem Rev; 2019 Apr; 119(7):4777-4816. PubMed ID: 30869873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal matrix-metal nanoparticle composites with tunable melting temperature and high thermal conductivity for phase-change thermal storage.
    Liu M; Ma Y; Wu H; Wang RY
    ACS Nano; 2015 Feb; 9(2):1341-51. PubMed ID: 25610944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and performance of solid thermal energy storage materials based on low-grade pyrophyllite minerals.
    Wang H; Hu B; Li J; Li X
    Heliyon; 2024 Mar; 10(5):e26871. PubMed ID: 38455537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.