These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 33322341)

  • 1. Grapevine Responses to Heat Stress and Global Warming.
    Venios X; Korkas E; Nisiotou A; Banilas G
    Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33322341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate change impacts and adaptive strategies: lessons from the grapevine.
    Mosedale JR; Abernethy KE; Smart RE; Wilson RJ; Maclean IM
    Glob Chang Biol; 2016 Nov; 22(11):3814-3828. PubMed ID: 27370903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: A comprehensive review.
    Gutiérrez-Gamboa G; Zheng W; Martínez de Toda F
    Food Res Int; 2021 Jan; 139():109946. PubMed ID: 33509499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential effect of atmospheric warming on grapevine phenology and post-harvest heat accumulation across a range of climates.
    Hall A; Mathews AJ; Holzapfel BP
    Int J Biometeorol; 2016 Sep; 60(9):1405-22. PubMed ID: 26826103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotyping methods to assess heat stress resilience in grapevine.
    Pettenuzzo S; Cappellin L; Grando MS; Costantini L
    J Exp Bot; 2022 Sep; 73(15):5128-5148. PubMed ID: 35532318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina.
    Cabré MF; Quénol H; Nuñez M
    Int J Biometeorol; 2016 Sep; 60(9):1325-40. PubMed ID: 26823161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth performance and carbon partitioning of grapevine Tempranillo clones under simulated climate change scenarios: Elevated CO
    Arrizabalaga-Arriazu M; Morales F; Irigoyen JJ; Hilbert G; Pascual I
    J Plant Physiol; 2020 Sep; 252():153226. PubMed ID: 32763650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-linear loss of suitable wine regions over Europe in response to increasing global warming.
    Sgubin G; Swingedouw D; Mignot J; Gambetta GA; Bois B; Loukos H; Noël T; Pieri P; García de Cortázar-Atauri I; Ollat N; van Leeuwen C
    Glob Chang Biol; 2023 Feb; 29(3):808-826. PubMed ID: 36376998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing Impacts of Climate Change on Phenology and Quality Traits of
    Biasi R; Brunori E; Ferrara C; Salvati L
    Plants (Basel); 2019 May; 8(5):. PubMed ID: 31075953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate Change Effects on Grapevine Physiology and Biochemistry: Benefits and Challenges of High Altitude as an Adaptation Strategy.
    Arias LA; Berli F; Fontana A; Bottini R; Piccoli P
    Front Plant Sci; 2022; 13():835425. PubMed ID: 35693157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance.
    Gambetta GA; Herrera JC; Dayer S; Feng Q; Hochberg U; Castellarin SD
    J Exp Bot; 2020 Aug; 71(16):4658-4676. PubMed ID: 32433735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cutting the Gordian Knot of abiotic stress in grapevine: From the test tube to climate change adaptation.
    Carvalho LC; Amâncio S
    Physiol Plant; 2019 Feb; 165(2):330-342. PubMed ID: 30357847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapidly changing climatic conditions for wine grape growing in the Okanagan Valley region of British Columbia, Canada.
    Rayne S; Forest K
    Sci Total Environ; 2016 Jun; 556():169-78. PubMed ID: 26971218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal differences in climate in the Chianti region of Tuscany and the relationship to vintage wine quality.
    Salinger MJ; Baldi M; Grifoni D; Jones G; Bartolini G; Cecchi S; Messeri G; Dalla Marta A; Orlandini S; Dalu GA; Maracchi G
    Int J Biometeorol; 2015 Dec; 59(12):1799-811. PubMed ID: 25935577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties.
    Fraga H; Malheiro AC; Moutinho-Pereira J; Santos JA
    Int J Biometeorol; 2013 Nov; 57(6):909-25. PubMed ID: 23306774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome.
    Rienth M; Torregrosa L; Sarah G; Ardisson M; Brillouet JM; Romieu C
    BMC Plant Biol; 2016 Jul; 16(1):164. PubMed ID: 27439426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extreme heat reduces and shifts United States premium wine production in the 21st century.
    White MA; Diffenbaugh NS; Jones GV; Pal JS; Giorgi F
    Proc Natl Acad Sci U S A; 2006 Jul; 103(30):11217-22. PubMed ID: 16840557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a Custom RT-qPCR Array for Assignment of Abiotic Stress Tolerance in Traditional Portuguese Grapevine Varieties.
    Carvalho LC; Silva M; Coito JL; Rocheta MP; Amâncio S
    Front Plant Sci; 2017; 8():1835. PubMed ID: 29118776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between wine composition and temperature: Impact on Bordeaux wine typicity in the context of global warming-Review.
    Drappier J; Thibon C; Rabot A; Geny-Denis L
    Crit Rev Food Sci Nutr; 2019; 59(1):14-30. PubMed ID: 29064726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic comparison between two Vitis vinifera L. varieties (Trincadeira and Touriga Nacional) in abiotic stress conditions.
    Rocheta M; Coito JL; Ramos MJ; Carvalho L; Becker JD; Carbonell-Bejerano P; Amâncio S
    BMC Plant Biol; 2016 Oct; 16(1):224. PubMed ID: 27733112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.