These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
449 related articles for article (PubMed ID: 33322457)
1. A Double-Channel Hybrid Deep Neural Network Based on CNN and BiLSTM for Remaining Useful Life Prediction. Zhao C; Huang X; Li Y; Yousaf Iqbal M Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322457 [TBL] [Abstract][Full Text] [Related]
2. Time Series Multiple Channel Convolutional Neural Network with Attention-Based Long Short-Term Memory for Predicting Bearing Remaining Useful Life. Jiang JR; Lee JE; Zeng YM Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31888110 [TBL] [Abstract][Full Text] [Related]
3. An enhanced CNN-LSTM remaining useful life prediction model for aircraft engine with attention mechanism. Li H; Wang Z; Li Z PeerJ Comput Sci; 2022; 8():e1084. PubMed ID: 36091994 [TBL] [Abstract][Full Text] [Related]
4. Robustness testing framework for RUL prediction Deep LSTM networks. Sayah M; Guebli D; Al Masry Z; Zerhouni N ISA Trans; 2021 Jul; 113():28-38. PubMed ID: 32646591 [TBL] [Abstract][Full Text] [Related]
5. A Remaining Useful Life Prognosis of Turbofan Engine Using Temporal and Spatial Feature Fusion. Peng C; Chen Y; Chen Q; Tang Z; Li L; Gui W Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435633 [TBL] [Abstract][Full Text] [Related]
6. Method for remaining useful life prediction of rolling bearings based on deep reinforcement learning. Wang Y; Li Y; Lu H; Wang D Rev Sci Instrum; 2024 Sep; 95(9):. PubMed ID: 39283188 [TBL] [Abstract][Full Text] [Related]
7. Remaining Useful Life Prediction Using Dual-Channel LSTM with Time Feature and Its Difference. Peng C; Wu J; Wang Q; Gui W; Tang Z Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554221 [TBL] [Abstract][Full Text] [Related]
8. Remaining Useful-Life Prediction of the Milling Cutting Tool Using Time-Frequency-Based Features and Deep Learning Models. Sayyad S; Kumar S; Bongale A; Kotecha K; Abraham A Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420825 [TBL] [Abstract][Full Text] [Related]
9. Remaining Useful Life Estimation Using Deep Convolutional Generative Adversarial Networks Based on an Autoencoder Scheme. Hou G; Xu S; Zhou N; Yang L; Fu Q Comput Intell Neurosci; 2020; 2020():9601389. PubMed ID: 32802032 [TBL] [Abstract][Full Text] [Related]
10. Few-shot RUL prediction for engines based on CNN-GRU model. Sun S; Wang J; Xiao Y; Peng J; Zhou X Sci Rep; 2024 Jul; 14(1):16041. PubMed ID: 38992098 [TBL] [Abstract][Full Text] [Related]
11. A new ensemble residual convolutional neural network for remaining useful life estimation. Wen L; Dong Y; Gao L Math Biosci Eng; 2019 Jan; 16(2):862-880. PubMed ID: 30861669 [TBL] [Abstract][Full Text] [Related]
12. Prediction of dissolved oxygen concentration in aquaculture based on attention mechanism and combined neural network. Yang W; Liu W; Gao Q Math Biosci Eng; 2023 Jan; 20(1):998-1017. PubMed ID: 36650799 [TBL] [Abstract][Full Text] [Related]
13. A method for predicting remaining useful life using enhanced Savitzky-Golay filter and improved deep learning framework. Li X; Wang L; Wang C; Ma X; Miao B; Xu D; Cheng R Sci Rep; 2024 Oct; 14(1):23983. PubMed ID: 39402125 [TBL] [Abstract][Full Text] [Related]
14. A Cotraining-Based Semisupervised Approach for Remaining-Useful-Life Prediction of Bearings. Yan X; Xia X; Wang L; Zhang Z Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298116 [TBL] [Abstract][Full Text] [Related]
15. Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network. Wang H; Yang J; Shi L; Wang R Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501790 [TBL] [Abstract][Full Text] [Related]
16. Deep Bidirectional Recurrent Neural Networks Ensemble for Remaining Useful Life Prediction of Aircraft Engine. Hu K; Cheng Y; Wu J; Zhu H; Shao X IEEE Trans Cybern; 2023 Apr; 53(4):2531-2543. PubMed ID: 34822334 [TBL] [Abstract][Full Text] [Related]
17. EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction. Wang H; Liu H; Huang T; Li G; Zhang L; Sun Y BMC Bioinformatics; 2022 Jun; 23(1):221. PubMed ID: 35676633 [TBL] [Abstract][Full Text] [Related]
18. Hybrid Deep Learning Approach for Stress Detection Using Decomposed EEG Signals. Roy B; Malviya L; Kumar R; Mal S; Kumar A; Bhowmik T; Hu JW Diagnostics (Basel); 2023 Jun; 13(11):. PubMed ID: 37296788 [TBL] [Abstract][Full Text] [Related]
19. Novel Deep Learning Network for Gait Recognition Using Multimodal Inertial Sensors. Shi LF; Liu ZY; Zhou KJ; Shi Y; Jing X Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679646 [TBL] [Abstract][Full Text] [Related]
20. Advertising Click-Through Rate Prediction Based on CNN-LSTM Neural Network. Zhu D Comput Intell Neurosci; 2021; 2021():3484104. PubMed ID: 34422030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]