These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 33322673)
1. Gait Trajectory and Gait Phase Prediction Based on an LSTM Network. Su B; Gutierrez-Farewik EM Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322673 [TBL] [Abstract][Full Text] [Related]
2. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units. Su B; Smith C; Gutierrez Farewik E Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277 [TBL] [Abstract][Full Text] [Related]
3. Performance of Deep Learning Models in Forecasting Gait Trajectories of Children with Neurological Disorders. Kolaghassi R; Al-Hares MK; Marcelli G; Sirlantzis K Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458954 [TBL] [Abstract][Full Text] [Related]
4. A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors. Liu K; Liu Y; Ji S; Gao C; Zhang S; Fu J Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447755 [TBL] [Abstract][Full Text] [Related]
5. Lower Limb Kinematics Trajectory Prediction Using Long Short-Term Memory Neural Networks. Zaroug A; Lai DTH; Mudie K; Begg R Front Bioeng Biotechnol; 2020; 8():362. PubMed ID: 32457881 [TBL] [Abstract][Full Text] [Related]
6. Prediction of gait trajectories based on the Long Short Term Memory neural networks. Zaroug A; Garofolini A; Lai DTH; Mudie K; Begg R PLoS One; 2021; 16(8):e0255597. PubMed ID: 34351994 [TBL] [Abstract][Full Text] [Related]
7. Stance and Swing Detection Based on the Angular Velocity of Lower Limb Segments During Walking. Grimmer M; Schmidt K; Duarte JE; Neuner L; Koginov G; Riener R Front Neurorobot; 2019; 13():57. PubMed ID: 31396072 [TBL] [Abstract][Full Text] [Related]
8. Gait Phase Detection in Walking and Stairs Using Machine Learning. Bauman VV; Brandon SCE J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36062965 [TBL] [Abstract][Full Text] [Related]
9. Using Deep Learning to Predict Minimum Foot-Ground Clearance Event from Toe-Off Kinematics. Asogwa CO; Nagano H; Wang K; Begg R Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146308 [TBL] [Abstract][Full Text] [Related]
10. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals. Sánchez Manchola MD; Pinto Bernal MJ; Munera M; Cifuentes CA Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284619 [TBL] [Abstract][Full Text] [Related]
11. Gait Recognition and Assistance Parameter Prediction Determination Based on Kinematic Information Measured by Inertial Measurement Units. Xiang Q; Wang J; Liu Y; Guo S; Liu L Bioengineering (Basel); 2024 Mar; 11(3):. PubMed ID: 38534549 [TBL] [Abstract][Full Text] [Related]
12. A Transformer-Based Neural Network for Gait Prediction in Lower Limb Exoskeleton Robots Using Plantar Force. Ren J; Wang A; Li H; Yue X; Meng L Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514841 [TBL] [Abstract][Full Text] [Related]
13. Gait Trajectory and Event Prediction from State Estimation for Exoskeletons During Gait. Tanghe K; De Groote F; Lefeber D; De Schutter J; Aertbelien E IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):211-220. PubMed ID: 31675336 [TBL] [Abstract][Full Text] [Related]
14. An Adaptable Human-Like Gait Pattern Generator Derived From a Lower Limb Exoskeleton. Mendoza-Crespo R; Torricelli D; Huegel JC; Gordillo JL; Pons JL; Soto R Front Robot AI; 2019; 6():36. PubMed ID: 33501052 [TBL] [Abstract][Full Text] [Related]
15. Machine learning approach to predict center of pressure trajectories in a complete gait cycle: a feedforward neural network vs. LSTM network. Choi A; Jung H; Lee KY; Lee S; Mun JH Med Biol Eng Comput; 2019 Dec; 57(12):2693-2703. PubMed ID: 31650342 [TBL] [Abstract][Full Text] [Related]
16. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots. Jung JY; Heo W; Yang H; Park H Sensors (Basel); 2015 Oct; 15(11):27738-59. PubMed ID: 26528986 [TBL] [Abstract][Full Text] [Related]
17. An LSTM-Based Prediction Method for Lower Limb Intention Perception by Integrative Analysis of Kinect Visual Signal. He J; Guo Z; Shao Z; Zhao J; Dan G J Healthc Eng; 2020; 2020():8024789. PubMed ID: 32774824 [TBL] [Abstract][Full Text] [Related]
18. Design, development, and evaluation of a local sensor-based gait phase recognition system using a logistic model decision tree for orthosis-control. Farah JD; Baddour N; Lemaire ED J Neuroeng Rehabil; 2019 Feb; 16(1):22. PubMed ID: 30709363 [TBL] [Abstract][Full Text] [Related]
19. Gait Intention Prediction Using a Lower-Limb Musculoskeletal Model and Long Short-Term Memory Neural Networks. Bian Q; Castellani M; Shepherd D; Duan J; Ding Z IEEE Trans Neural Syst Rehabil Eng; 2024; 32():822-830. PubMed ID: 38345960 [TBL] [Abstract][Full Text] [Related]
20. Gait Prediction and Variable Admittance Control for Lower Limb Exoskeleton With Measurement Delay and Extended-State-Observer. Chen Z; Guo Q; Li T; Yan Y; Jiang D IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):8693-8706. PubMed ID: 35302939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]