These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 33322728)

  • 1. Review on the Impact of Polyols on the Properties of Bio-Based Polyesters.
    Lang K; Sánchez-Leija RJ; Gross RA; Linhardt RJ
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33322728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing the power of polyol-based polyesters for biomedical innovations: synthesis, properties, and biodegradation.
    Fakhri V; Su CH; Tavakoli Dare M; Bazmi M; Jafari A; Pirouzfar V
    J Mater Chem B; 2023 Oct; 11(40):9597-9629. PubMed ID: 37740402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Bio-Content Thermoplastic Polyurethanes from Azelaic Acid.
    Rajput BS; Hai TAP; Burkart MD
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35956835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation.
    Paciorek-Sadowska J; Borowicz M; Chmiel E; Lubczak J
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of bio-based polyester elastomers and evaluation of their
    Gao Y; Xue J; Zhang L; Wang Z
    Biomater Sci; 2022 Jul; 10(14):3924-3934. PubMed ID: 35699472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and applications of biodegradable polyester tissue scaffolds based on endogenous monomers found in human metabolism.
    Barrett DG; Yousaf MN
    Molecules; 2009 Oct; 14(10):4022-50. PubMed ID: 19924045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the Synthetic Approach on the Formation and Magnetic Properties of Iron-Based Nanophase in Branched Polyester Polyol Matrix.
    Khannanov A; Burmatova A; Ignatyeva K; Vagizov F; Kiiamov A; Tayurskii D; Cherosov M; Gerasimov A; Vladimir E; Kutyreva M
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eco-Friendly Ether and Ester-Urethane Prepolymer: Structure, Processing and Properties.
    Niesiobędzka J; Głowińska E; Datta J
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocrosslinkable biodegradable elastomers based on cinnamate-functionalized polyesters.
    Zhu C; Kustra SR; Bettinger CJ
    Acta Biomater; 2013 Jul; 9(7):7362-70. PubMed ID: 23567941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress in synthesis, modification, characterization and applications of hyperbranched polyphosphate polyesters.
    Hao D; Guo X; Zhu X; Wei C; Gao L; Wang X
    Des Monomers Polym; 2024; 27(1):62-86. PubMed ID: 39077753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic and oxidative degradation of poly(polyol sebacate).
    Li Y; Thouas GA; Shi H; Chen Q
    J Biomater Appl; 2014 Apr; 28(8):1138-50. PubMed ID: 23904286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Progress in Advanced Polyester Elastomers for Tissue Engineering and Bioelectronics.
    Zhao Y; Zhong W
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soybean-Based Polyol as a Substitute of Fossil-Based Polyol on the Synthesis of Thermoplastic Polyurethanes: The Effect of Its Content on Morphological and Physicochemical Properties.
    Ernzen JR; Covas JA; Marcos-Fernández A; Fiorio R; Bianchi O
    Polymers (Basel); 2023 Oct; 15(19):. PubMed ID: 37836059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review.
    Zia KM; Noreen A; Zuber M; Tabasum S; Mujahid M
    Int J Biol Macromol; 2016 Jan; 82():1028-40. PubMed ID: 26492854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters.
    Choi SY; Rhie MN; Kim HT; Joo JC; Cho IJ; Son J; Jo SY; Sohn YJ; Baritugo KA; Pyo J; Lee Y; Lee SY; Park SJ
    Metab Eng; 2020 Mar; 58():47-81. PubMed ID: 31145993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyol Structure Influences Enzymatic Hydrolysis of Bio-Based 2,5-Furandicarboxylic Acid (FDCA) Polyesters.
    Haernvall K; Zitzenbacher S; Amer H; Zumstein MT; Sander M; McNeill K; Yamamoto M; Schick MB; Ribitsch D; Guebitz GM
    Biotechnol J; 2017 Sep; 12(9):. PubMed ID: 28731613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly(ester amide) elastomers.
    Wang J; Bettinger CJ; Langer RS; Borenstein JT
    Organogenesis; 2010; 6(4):212-6. PubMed ID: 21220957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomedical Applications of Biodegradable Polyesters.
    Manavitehrani I; Fathi A; Badr H; Daly S; Negahi Shirazi A; Dehghani F
    Polymers (Basel); 2016 Jan; 8(1):. PubMed ID: 30979116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyester elastomers for soft tissue engineering.
    Ye H; Zhang K; Kai D; Li Z; Loh XJ
    Chem Soc Rev; 2018 Jun; 47(12):4545-4580. PubMed ID: 29722412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of hyperbranched polyesters on the surface tension of polyols.
    Ziemer A; Azizi M; Pleul D; Simon F; Michel S; Kreitschmann M; Kierkus P; Voit B; Grundke K
    Langmuir; 2004 Sep; 20(19):8096-102. PubMed ID: 15350078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.