BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33322990)

  • 1. QbD approach to downstream processing of spray-dried amorphous solid dispersions - a case study.
    Henriques J; Moreira J; Doktorovová S
    Pharm Dev Technol; 2021 Mar; 26(3):269-277. PubMed ID: 33322990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Downstream processing of a ternary amorphous solid dispersion: The impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution.
    Davis MT; Potter CB; Walker GM
    Int J Pharm; 2018 Jun; 544(1):242-253. PubMed ID: 29689366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tableting behavior of freeze and spray-dried excipients in pharmaceutical formulations.
    Madi C; Hsein H; Busignies V; Tchoreloff P; Mazel V
    Int J Pharm; 2024 May; 656():124059. PubMed ID: 38552753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of α-lactose monohydrate as a direct compression excipient using roller compaction.
    Abu Fara D; Rashid I; Alkhamis K; Al-Omari M; Chowdhry BZ; Badwan A
    Drug Dev Ind Pharm; 2018 Dec; 44(12):2038-2047. PubMed ID: 30095020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of roller compaction with subsequent tableting and characterization of lactose and microcrystalline cellulose.
    Hein S; Picker-Freyer KM; Langridge J
    Pharm Dev Technol; 2008; 13(6):523-32. PubMed ID: 18728996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of compressibility and compactibility parameters of roller compacted Theophylline and its binary mixtures.
    Hadžović E; Betz G; Hadžidedić S; El-Arini SK; Leuenberger H
    Int J Pharm; 2011 Sep; 416(1):97-103. PubMed ID: 21704142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Spray-Dried Particle Morphology on Mechanical and Flow Properties of Felodipine in PVP VA Amorphous Solid Dispersions.
    Ekdahl A; Mudie D; Malewski D; Amidon G; Goodwin A
    J Pharm Sci; 2019 Nov; 108(11):3657-3666. PubMed ID: 31446144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Downstream processing of spray-dried ASD with hypromellose acetate succinate - Roller compaction and subsequent compression into high ASD load tablets.
    Sauer A; Warashina S; Mishra SM; Lesser I; Kirchhöfer K
    Int J Pharm X; 2021 Dec; 3():100099. PubMed ID: 34765966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the Factors That Control the Quality of Mini-Tablet Compression: Flow, Particle Size, and Tooling Dimension.
    Zhao J; Yin D; Rowe J; Badawy S; Nikfar F; Pandey P
    J Pharm Sci; 2018 Apr; 107(4):1204-1208. PubMed ID: 29233726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of the degree of intimate mixing on the compaction properties of materials produced by crystallo-co-spray drying.
    McDonagh AF; Duff B; Brennan L; Tajber L
    Eur J Pharm Sci; 2020 Nov; 154():105505. PubMed ID: 32777259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative binder efficiency modeling of dry granulation binders using roller compaction.
    Gupte A; DeHart M; Stagner WC; Haware RV
    Drug Dev Ind Pharm; 2017 Apr; 43(4):574-583. PubMed ID: 27977316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roll compaction of mannitol: compactability study of crystalline and spray-dried grades.
    Wagner CM; Pein M; Breitkreutz J
    Int J Pharm; 2013 Sep; 453(2):416-22. PubMed ID: 23742975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spray drying of naproxen and naproxen sodium for improved tableting and dissolution - physicochemical characterization and compression performance.
    Al-Zoubi N; Odeh F; Partheniadis I; Gharaibeh S; Nikolakakis I
    Pharm Dev Technol; 2021 Feb; 26(2):193-208. PubMed ID: 33211618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle engineering of excipients: A mechanistic investigation into the compaction properties of lignin and [co]-spray dried lignin.
    Solomon S; Ziaee A; Giraudeau L; O'Reilly E; Walker G; Albadarin AB
    Int J Pharm; 2019 May; 563():237-248. PubMed ID: 30935917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients.
    Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W
    Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the Performance of a Novel Direct Compression Excipient Comprising Roller Compacted Chitin.
    Abu Fara D; Al-Hmoud L; Rashid I; Chowdhry BZ; Badwan A
    Mar Drugs; 2020 Feb; 18(2):. PubMed ID: 32079246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of the process variables of roller compaction, on the basis of granules characteristics (flow, mechanical strength, and disintegration behavior): an application of SeDeM-ODT expert system.
    Khan A
    Drug Dev Ind Pharm; 2019 Sep; 45(9):1537-1546. PubMed ID: 31210544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roller compaction of hydrophilic extended release tablets-combined effects of processing variables and drug/matrix former particle size.
    Heiman J; Tajarobi F; Gururajan B; Juppo A; Abrahmsén-Alami S
    AAPS PharmSciTech; 2015 Apr; 16(2):267-77. PubMed ID: 25273028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of API concentration on the roller compaction process: modeling and prediction of the post compacted ribbon, granule and tablet properties using multivariate data analysis.
    Boersen N; Carvajal MT; Morris KR; Peck GE; Pinal R
    Drug Dev Ind Pharm; 2015; 41(9):1470-8. PubMed ID: 25212638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of potential novel cushioning agents for the compaction of coated multi-particulates by co-processing micronized lactose with polymers.
    Lin X; Chyi CW; Ruan KF; Feng Y; Heng PW
    Eur J Pharm Biopharm; 2011 Oct; 79(2):406-15. PubMed ID: 21458566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.