BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 33323021)

  • 1. Rational Selection of CRISPR-Cas Triggering Homology-Directed Repair in Human Cells.
    Li F; Zhou C; Tu T; Liu Y; Lv X; Wang B; Song Z; Zhao Q; Liu C; Gu F; Zhao J
    Hum Gene Ther; 2021 Mar; 32(5-6):302-309. PubMed ID: 33323021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cpf1-Assisted Multiplex Genome Editing and Transcriptional Repression in Streptomyces.
    Li L; Wei K; Zheng G; Liu X; Chen S; Jiang W; Lu Y
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980561
    [No Abstract]   [Full Text] [Related]  

  • 3. Systematic evaluation of CRISPR-Cas systems reveals design principles for genome editing in human cells.
    Wang Y; Liu KI; Sutrisnoh NB; Srinivasan H; Zhang J; Li J; Zhang F; Lalith CRJ; Xing H; Shanmugam R; Foo JN; Yeo HT; Ooi KH; Bleckwehl T; Par YYR; Lee SM; Ismail NNB; Sanwari NAB; Lee STV; Lew J; Tan MH
    Genome Biol; 2018 May; 19(1):62. PubMed ID: 29843790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Cas proteins for CRISPR-Cas editing in streptomycetes.
    Yeo WL; Heng E; Tan LL; Lim YW; Lim YH; Hoon S; Zhao H; Zhang MM; Wong FT
    Biotechnol Bioeng; 2019 Sep; 116(9):2330-2338. PubMed ID: 31090220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases.
    Kim D; Hager M; Brant E; Budak H
    Funct Integr Genomics; 2021 Jul; 21(3-4):355-366. PubMed ID: 33710467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive optimization of a reporter assay toolbox for three distinct CRISPR-Cas systems.
    Chen L; Gao H; Zhou B; Wang Y
    FEBS Open Bio; 2021 Jul; 11(7):1965-1980. PubMed ID: 33999508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum.
    Jiang Y; Qian F; Yang J; Liu Y; Dong F; Xu C; Sun B; Chen B; Xu X; Li Y; Wang R; Yang S
    Nat Commun; 2017 May; 8():15179. PubMed ID: 28469274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SpCas9- and LbCas12a-Mediated DNA Editing Produce Different Gene Knockout Outcomes in Zebrafish Embryos.
    Meshalkina DA; Glushchenko AS; Kysil EV; Mizgirev IV; Frolov A
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32635161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using
    Zhang Y; Cai Y; Sun S; Han T; Chen L; Hou W
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a CRISPR/Cpf1 system for targeted gene disruption in Aspergillus aculeatus TBRC 277.
    Abdulrachman D; Eurwilaichitr L; Champreda V; Chantasingh D; Pootanakit K
    BMC Biotechnol; 2021 Feb; 21(1):15. PubMed ID: 33573639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus.
    Steinert J; Schiml S; Fauser F; Puchta H
    Plant J; 2015 Dec; 84(6):1295-305. PubMed ID: 26576927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two high-fidelity variants: efSaCas9 and SaCas9-HF, which one is better?
    Lv J; Xi H; Lv X; Zhou Y; Wang J; Chen H; Yan T; Jin J; Zhao J; Gu F; Song Z
    Gene Ther; 2022 Aug; 29(7-8):458-463. PubMed ID: 35095097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells.
    Tóth E; Weinhardt N; Bencsura P; Huszár K; Kulcsár PI; Tálas A; Fodor E; Welker E
    Biol Direct; 2016 Sep; 11():46. PubMed ID: 27630115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient multiplex CRISPR/Cpf1 (Cas12a) genome editing system in Aspergillus aculeatus TBRC 277.
    Abdulrachman D; Champreda V; Eurwilaichitr L; Chantasingh D; Pootanakit K
    J Biotechnol; 2022 Aug; 355():53-64. PubMed ID: 35788357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas9 based genome editing for defective gene correction in humans and other mammals.
    Karapurkar JK; Antao AM; Kim KS; Ramakrishna S
    Prog Mol Biol Transl Sci; 2021; 181():185-229. PubMed ID: 34127194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SaCas9 Requires 5'-NNGRRT-3' PAM for Sufficient Cleavage and Possesses Higher Cleavage Activity than SpCas9 or FnCpf1 in Human Cells.
    Xie H; Tang L; He X; Liu X; Zhou C; Liu J; Ge X; Li J; Liu C; Zhao J; Qu J; Song Z; Gu F
    Biotechnol J; 2018 Apr; 13(4):e1700561. PubMed ID: 29247600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving CRISPR-Cas9 Genome Editing Efficiency by Fusion with Chromatin-Modulating Peptides.
    Ding X; Seebeck T; Feng Y; Jiang Y; Davis GD; Chen F
    CRISPR J; 2019 Feb; 2():51-63. PubMed ID: 31021236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells.
    Kleinstiver BP; Tsai SQ; Prew MS; Nguyen NT; Welch MM; Lopez JM; McCaw ZR; Aryee MJ; Joung JK
    Nat Biotechnol; 2016 Aug; 34(8):869-74. PubMed ID: 27347757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating CRISPR/Cas9 genome-editing activity by small molecules.
    Chen S; Chen D; Liu B; Haisma HJ
    Drug Discov Today; 2022 Apr; 27(4):951-966. PubMed ID: 34823004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.