BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33323030)

  • 1. Production of L-carnitine-enriched edible filamentous fungal biomass through submerged cultivation.
    Rousta N; Ferreira JA; Taherzadeh MJ
    Bioengineered; 2021 Dec; 12(1):358-368. PubMed ID: 33323030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of lactic acid and fungal biomass by Rhizopus fungi from food processing waste streams.
    Jin B; Yin P; Ma Y; Zhao L
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):678-86. PubMed ID: 16208461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of food waste-derived volatile fatty acids for production of edible Rhizopus oligosporus fungal biomass.
    Wainaina S; Kisworini AD; Fanani M; Wikandari R; Millati R; Niklasson C; Taherzadeh MJ
    Bioresour Technol; 2020 Aug; 310():123444. PubMed ID: 32361197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filamentous Fungus
    Rousta N; Hellwig C; Wainaina S; Lukitawesa L; Agnihotri S; Rousta K; Taherzadeh MJ
    Foods; 2021 Nov; 10(11):. PubMed ID: 34829052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining submerged and solid state fermentation to convert waste bread into protein and pigment using the edible filamentous fungus N. intermedia.
    Gmoser R; Sintca C; Taherzadeh MJ; Lennartsson PR
    Waste Manag; 2019 Sep; 97():63-70. PubMed ID: 31447028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-Production of Fungal Biomass Derived Constituents and Ethanol from Citrus Wastes Free Sugars without Auxiliary Nutrients in Airlift Bioreactor.
    Satari B; Karimi K; Taherzadeh MJ; Zamani A
    Int J Mol Sci; 2016 Feb; 17(3):302. PubMed ID: 26927089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vegan-mycoprotein concentrate from pea-processing industry byproduct using edible filamentous fungi.
    Souza Filho PF; Nair RB; Andersson D; Lennartsson PR; Taherzadeh MJ
    Fungal Biol Biotechnol; 2018; 5():5. PubMed ID: 29619233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upgrading the antioxidant potential of cereals by their fungal fermentation under solid-state cultivation conditions.
    Bhanja Dey T; Kuhad RC
    Lett Appl Microbiol; 2014 Nov; 59(5):493-9. PubMed ID: 24964826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of Agricultural Streams and Food-Processing By-Products to Value-Added Compounds Using Filamentous Fungi.
    Chan LG; Cohen JL; de Moura Bell JMLN
    Annu Rev Food Sci Technol; 2018 Mar; 9():503-523. PubMed ID: 29328807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fermentative approach towards optimizing directed biosynthesis of fumaric acid by Rhizopus oryzae 1526 utilizing apple industry waste biomass.
    Das RK; Brar SK; Verma M
    Fungal Biol; 2015 Dec; 119(12):1279-1290. PubMed ID: 26615750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization and scale-up of α-amylase production by Aspergillus oryzae using solid-state fermentation of edible oil cakes.
    Balakrishnan M; Jeevarathinam G; Kumar SKS; Muniraj I; Uthandi S
    BMC Biotechnol; 2021 May; 21(1):33. PubMed ID: 33947396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioconversion of Jackfruit Seed Waste to Fungal Biomass Protein by Submerged Fermentation.
    Chakraborty A; Bhowal J
    Appl Biochem Biotechnol; 2023 Apr; 195(4):2158-2171. PubMed ID: 35802236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Starch and protein recovery from brewer's spent grain using hydrothermal pretreatment and their conversion to edible filamentous fungi - A brewery biorefinery concept.
    Parchami M; Ferreira JA; Taherzadeh MJ
    Bioresour Technol; 2021 Oct; 337():125409. PubMed ID: 34166931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valorization of cheese whey and orange molasses for fungal biomass production by submerged fermentation with Rhizopus sp.
    Ibarruri J; Hernández I
    Bioprocess Biosyst Eng; 2019 Aug; 42(8):1285-1300. PubMed ID: 30997614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Airlift bioreactor-based strategies for prolonged semi-continuous cultivation of edible Agaricomycetes.
    Cerrone F; Lochlainn CÓ; Callaghan T; McDonald P; O'Connor KE
    Appl Microbiol Biotechnol; 2024 Jun; 108(1):377. PubMed ID: 38888638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cultivation of edible filamentous fungus Aspergillus oryzae on volatile fatty acids derived from anaerobic digestion of food waste and cow manure.
    Uwineza C; Mahboubi A; Atmowidjojo A; Ramadhani A; Wainaina S; Millati R; Wikandari R; Niklasson C; Taherzadeh MJ
    Bioresour Technol; 2021 Oct; 337():125410. PubMed ID: 34157433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agmatine Production by Aspergillus oryzae Is Elevated by Low pH during Solid-State Cultivation.
    Akasaka N; Kato S; Kato S; Hidese R; Wagu Y; Sakoda H; Fujiwara S
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29802188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol and Protein from Ethanol Plant By-Products Using Edible Fungi Neurospora intermedia and Aspergillus oryzae.
    Bátori V; Ferreira JA; Taherzadeh MJ; Lennartsson PR
    Biomed Res Int; 2015; 2015():176371. PubMed ID: 26682213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-treatment of Fungal Biomass to Enhance Pigment Production.
    Gmoser R; Ferreira JA; Taherzadeh MJ; Lennartsson PR
    Appl Biochem Biotechnol; 2019 Sep; 189(1):160-174. PubMed ID: 30957195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From stale bread and brewers spent grain to a new food source using edible filamentous fungi.
    Gmoser R; Fristedt R; Larsson K; Undeland I; Taherzadeh MJ; Lennartsson PR
    Bioengineered; 2020 Dec; 11(1):582-598. PubMed ID: 32449450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.