These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1326 related articles for article (PubMed ID: 33323239)
1. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Bellemo V; Lim ZW; Lim G; Nguyen QD; Xie Y; Yip MYT; Hamzah H; Ho J; Lee XQ; Hsu W; Lee ML; Musonda L; Chandran M; Chipalo-Mutati G; Muma M; Tan GSW; Sivaprasad S; Menon G; Wong TY; Ting DSW Lancet Digit Health; 2019 May; 1(1):e35-e44. PubMed ID: 33323239 [TBL] [Abstract][Full Text] [Related]
2. Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. Ting DSW; Cheung CY; Lim G; Tan GSW; Quang ND; Gan A; Hamzah H; Garcia-Franco R; San Yeo IY; Lee SY; Wong EYM; Sabanayagam C; Baskaran M; Ibrahim F; Tan NC; Finkelstein EA; Lamoureux EL; Wong IY; Bressler NM; Sivaprasad S; Varma R; Jonas JB; He MG; Cheng CY; Cheung GCM; Aung T; Hsu W; Lee ML; Wong TY JAMA; 2017 Dec; 318(22):2211-2223. PubMed ID: 29234807 [TBL] [Abstract][Full Text] [Related]
3. An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs. Li Z; Keel S; Liu C; He Y; Meng W; Scheetz J; Lee PY; Shaw J; Ting D; Wong TY; Taylor H; Chang R; He M Diabetes Care; 2018 Dec; 41(12):2509-2516. PubMed ID: 30275284 [TBL] [Abstract][Full Text] [Related]
4. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening. Shah P; Mishra DK; Shanmugam MP; Doshi B; Jayaraj H; Ramanjulu R Indian J Ophthalmol; 2020 Feb; 68(2):398-405. PubMed ID: 31957737 [TBL] [Abstract][Full Text] [Related]
5. Multimodal imaging interpreted by graders to detect re-activation of diabetic eye disease in previously treated patients: the EMERALD diagnostic accuracy study. Lois N; Cook J; Wang A; Aldington S; Mistry H; Maredza M; McAuley D; Aslam T; Bailey C; Chong V; Ghanchi F; Scanlon P; Sivaprasad S; Steel D; Styles C; Azuara-Blanco A; Prior L; Waugh N Health Technol Assess; 2021 May; 25(32):1-104. PubMed ID: 34060440 [TBL] [Abstract][Full Text] [Related]
6. Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients. Heydon P; Egan C; Bolter L; Chambers R; Anderson J; Aldington S; Stratton IM; Scanlon PH; Webster L; Mann S; du Chemin A; Owen CG; Tufail A; Rudnicka AR Br J Ophthalmol; 2021 May; 105(5):723-728. PubMed ID: 32606081 [TBL] [Abstract][Full Text] [Related]
7. Comparison of 21 artificial intelligence algorithms in automated diabetic retinopathy screening using handheld fundus camera. Kubin AM; Huhtinen P; Ohtonen P; Keskitalo A; Wirkkala J; Hautala N Ann Med; 2024 Dec; 56(1):2352018. PubMed ID: 38738798 [TBL] [Abstract][Full Text] [Related]
8. Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study. Ruamviboonsuk P; Tiwari R; Sayres R; Nganthavee V; Hemarat K; Kongprayoon A; Raman R; Levinstein B; Liu Y; Schaekermann M; Lee R; Virmani S; Widner K; Chambers J; Hersch F; Peng L; Webster DR Lancet Digit Health; 2022 Apr; 4(4):e235-e244. PubMed ID: 35272972 [TBL] [Abstract][Full Text] [Related]
9. Medios- An offline, smartphone-based artificial intelligence algorithm for the diagnosis of diabetic retinopathy. Sosale B; Sosale AR; Murthy H; Sengupta S; Naveenam M Indian J Ophthalmol; 2020 Feb; 68(2):391-395. PubMed ID: 31957735 [TBL] [Abstract][Full Text] [Related]
10. Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study. Lin D; Xiong J; Liu C; Zhao L; Li Z; Yu S; Wu X; Ge Z; Hu X; Wang B; Fu M; Zhao X; Wang X; Zhu Y; Chen C; Li T; Li Y; Wei W; Zhao M; Li J; Xu F; Ding L; Tan G; Xiang Y; Hu Y; Zhang P; Han Y; Li JO; Wei L; Zhu P; Liu Y; Chen W; Ting DSW; Wong TY; Chen Y; Lin H Lancet Digit Health; 2021 Aug; 3(8):e486-e495. PubMed ID: 34325853 [TBL] [Abstract][Full Text] [Related]
11. Head to head comparison of diagnostic performance of three non-mydriatic cameras for diabetic retinopathy screening with artificial intelligence. Doğan ME; Bilgin AB; Sari R; Bulut M; Akar Y; Aydemir M Eye (Lond); 2024 Jun; 38(9):1694-1701. PubMed ID: 38467864 [TBL] [Abstract][Full Text] [Related]
12. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976 [TBL] [Abstract][Full Text] [Related]
13. THEIA™ development, and testing of artificial intelligence-based primary triage of diabetic retinopathy screening images in New Zealand. Vaghefi E; Yang S; Xie L; Hill S; Schmiedel O; Murphy R; Squirrell D Diabet Med; 2021 Apr; 38(4):e14386. PubMed ID: 32794618 [TBL] [Abstract][Full Text] [Related]
14. Pivotal Evaluation of an Artificial Intelligence System for Autonomous Detection of Referrable and Vision-Threatening Diabetic Retinopathy. Ipp E; Liljenquist D; Bode B; Shah VN; Silverstein S; Regillo CD; Lim JI; Sadda S; Domalpally A; Gray G; Bhaskaranand M; Ramachandra C; Solanki K; JAMA Netw Open; 2021 Nov; 4(11):e2134254. PubMed ID: 34779843 [TBL] [Abstract][Full Text] [Related]
15. Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital. Liu R; Li Q; Xu F; Wang S; He J; Cao Y; Shi F; Chen X; Chen J Biomed Eng Online; 2022 Jul; 21(1):47. PubMed ID: 35859144 [TBL] [Abstract][Full Text] [Related]
16. Detection of Diabetic Retinopathy from Ultra-Widefield Scanning Laser Ophthalmoscope Images: A Multicenter Deep Learning Analysis. Tang F; Luenam P; Ran AR; Quadeer AA; Raman R; Sen P; Khan R; Giridhar A; Haridas S; Iglicki M; Zur D; Loewenstein A; Negri HP; Szeto S; Lam BKY; Tham CC; Sivaprasad S; Mckay M; Cheung CY Ophthalmol Retina; 2021 Nov; 5(11):1097-1106. PubMed ID: 33540169 [TBL] [Abstract][Full Text] [Related]
17. Diagnostic Accuracy of Community-Based Diabetic Retinopathy Screening With an Offline Artificial Intelligence System on a Smartphone. Natarajan S; Jain A; Krishnan R; Rogye A; Sivaprasad S JAMA Ophthalmol; 2019 Oct; 137(10):1182-1188. PubMed ID: 31393538 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: a real-world study. Ming S; Xie K; Lei X; Yang Y; Zhao Z; Li S; Jin X; Lei B Int Ophthalmol; 2021 Apr; 41(4):1291-1299. PubMed ID: 33389425 [TBL] [Abstract][Full Text] [Related]
19. Comparison of early diabetic retinopathy staging in asymptomatic patients between autonomous AI-based screening and human-graded ultra-widefield colour fundus images. Sedova A; Hajdu D; Datlinger F; Steiner I; Neschi M; Aschauer J; Gerendas BS; Schmidt-Erfurth U; Pollreisz A Eye (Lond); 2022 Mar; 36(3):510-516. PubMed ID: 35132211 [TBL] [Abstract][Full Text] [Related]