These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1016 related articles for article (PubMed ID: 33323271)
1. Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study. Faes L; Wagner SK; Fu DJ; Liu X; Korot E; Ledsam JR; Back T; Chopra R; Pontikos N; Kern C; Moraes G; Schmid MK; Sim D; Balaskas K; Bachmann LM; Denniston AK; Keane PA Lancet Digit Health; 2019 Sep; 1(5):e232-e242. PubMed ID: 33323271 [TBL] [Abstract][Full Text] [Related]
2. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057 [TBL] [Abstract][Full Text] [Related]
3. Accuracy of automated machine learning in classifying retinal pathologies from ultra-widefield pseudocolour fundus images. Antaki F; Coussa RG; Kahwati G; Hammamji K; Sebag M; Duval R Br J Ophthalmol; 2023 Jan; 107(1):90-95. PubMed ID: 34344669 [TBL] [Abstract][Full Text] [Related]
4. Fully automated detection of retinal disorders by image-based deep learning. Li F; Chen H; Liu Z; Zhang X; Wu Z Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422 [TBL] [Abstract][Full Text] [Related]
5. Performance and Usability of Code-Free Deep Learning for Chest Radiograph Classification, Object Detection, and Segmentation. Santomartino SM; Hafezi-Nejad N; Parekh VS; Yi PH Radiol Artif Intell; 2023 Mar; 5(2):e220062. PubMed ID: 37035428 [TBL] [Abstract][Full Text] [Related]
6. Automated machine learning model for fundus image classification by health-care professionals with no coding experience. Zago Ribeiro L; Nakayama LF; Malerbi FK; Regatieri CVS Sci Rep; 2024 May; 14(1):10395. PubMed ID: 38710726 [TBL] [Abstract][Full Text] [Related]
7. Self-Supervised Learning for Improved Optical Coherence Tomography Detection of Macular Telangiectasia Type 2. Gholami S; Scheppke L; Kshirsagar M; Wu Y; Dodhia R; Bonelli R; Leung I; Sallo FB; Muldrew A; Jamison C; Peto T; Lavista Ferres J; Weeks WB; Friedlander M; Lee AY; JAMA Ophthalmol; 2024 Mar; 142(3):226-233. PubMed ID: 38329740 [TBL] [Abstract][Full Text] [Related]
8. Screening and identifying hepatobiliary diseases through deep learning using ocular images: a prospective, multicentre study. Xiao W; Huang X; Wang JH; Lin DR; Zhu Y; Chen C; Yang YH; Xiao J; Zhao LQ; Li JO; Cheung CY; Mise Y; Guo ZY; Du YF; Chen BB; Hu JX; Zhang K; Lin XS; Wen W; Liu YZ; Chen WR; Zhong YS; Lin HT Lancet Digit Health; 2021 Feb; 3(2):e88-e97. PubMed ID: 33509389 [TBL] [Abstract][Full Text] [Related]
9. Predicting sex from retinal fundus photographs using automated deep learning. Korot E; Pontikos N; Liu X; Wagner SK; Faes L; Huemer J; Balaskas K; Denniston AK; Khawaja A; Keane PA Sci Rep; 2021 May; 11(1):10286. PubMed ID: 33986429 [TBL] [Abstract][Full Text] [Related]
10. Performance of Automated Machine Learning for Diabetic Retinopathy Image Classification from Multi-field Handheld Retinal Images. Jacoba CMP; Doan D; Salongcay RP; Aquino LAC; Silva JPY; Salva CMG; Zhang D; Alog GP; Zhang K; Locaylocay KLRB; Saunar AV; Ashraf M; Sun JK; Peto T; Aiello LP; Silva PS Ophthalmol Retina; 2023 Aug; 7(8):703-712. PubMed ID: 36924893 [TBL] [Abstract][Full Text] [Related]
11. Deep learning and radiomics: the utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT. Coy H; Hsieh K; Wu W; Nagarajan MB; Young JR; Douek ML; Brown MS; Scalzo F; Raman SS Abdom Radiol (NY); 2019 Jun; 44(6):2009-2020. PubMed ID: 30778739 [TBL] [Abstract][Full Text] [Related]
12. Automated Machine Learning versus Expert-Designed Models in Ocular Toxoplasmosis: Detection and Lesion Localization Using Fundus Images. Milad D; Antaki F; Bernstein A; Touma S; Duval R Ocul Immunol Inflamm; 2024 Nov; 32(9):2061-2067. PubMed ID: 38411944 [TBL] [Abstract][Full Text] [Related]
13. Development and deployment of a smartphone application for diagnosing trachoma: Leveraging code-free deep learning and edge artificial intelligence. Milad D; Antaki F; Robert MC; Duval R Saudi J Ophthalmol; 2023; 37(3):200-206. PubMed ID: 38074296 [TBL] [Abstract][Full Text] [Related]
14. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography. Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547 [TBL] [Abstract][Full Text] [Related]
15. Development and international validation of custom-engineered and code-free deep-learning models for detection of plus disease in retinopathy of prematurity: a retrospective study. Wagner SK; Liefers B; Radia M; Zhang G; Struyven R; Faes L; Than J; Balal S; Hennings C; Kilduff C; Pooprasert P; Glinton S; Arunakirinathan M; Giannakis P; Braimah IZ; Ahmed ISH; Al-Feky M; Khalid H; Ferraz D; Vieira J; Jorge R; Husain S; Ravelo J; Hinds AM; Henderson R; Patel HI; Ostmo S; Campbell JP; Pontikos N; Patel PJ; Keane PA; Adams G; Balaskas K Lancet Digit Health; 2023 Jun; 5(6):e340-e349. PubMed ID: 37088692 [TBL] [Abstract][Full Text] [Related]
16. Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study. Taylor AG; Mielke C; Mongan J PLoS Med; 2018 Nov; 15(11):e1002697. PubMed ID: 30457991 [TBL] [Abstract][Full Text] [Related]
17. Development of a code-free machine learning model for the classification of cataract surgery phases. Touma S; Antaki F; Duval R Sci Rep; 2022 Feb; 12(1):2398. PubMed ID: 35165304 [TBL] [Abstract][Full Text] [Related]
18. Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs. Li F; Yan L; Wang Y; Shi J; Chen H; Zhang X; Jiang M; Wu Z; Zhou K Graefes Arch Clin Exp Ophthalmol; 2020 Apr; 258(4):851-867. PubMed ID: 31989285 [TBL] [Abstract][Full Text] [Related]
19. A User-friendly Approach for the Diagnosis of Diabetic Retinopathy Using ChatGPT and Automated Machine Learning. Mohammadi SS; Nguyen QD Ophthalmol Sci; 2024; 4(4):100495. PubMed ID: 38690313 [TBL] [Abstract][Full Text] [Related]
20. Application of Artificial Intelligence to the Monitoring of Medication Adherence for Tuberculosis Treatment in Africa: Algorithm Development and Validation. Sekandi JN; Shi W; Zhu R; Kaggwa P; Mwebaze E; Li S JMIR AI; 2023; 2(1):e40167. PubMed ID: 38464947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]