BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 33324172)

  • 1. Learning-Dependent Dendritic Spine Plasticity Is Reduced in the Aged Mouse Cortex.
    Huang L; Zhou H; Chen K; Chen X; Yang G
    Front Neural Circuits; 2020; 14():581435. PubMed ID: 33324172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyramidal Neurons in Different Cortical Layers Exhibit Distinct Dynamics and Plasticity of Apical Dendritic Spines.
    Tjia M; Yu X; Jammu LS; Lu J; Zuo Y
    Front Neural Circuits; 2017; 11():43. PubMed ID: 28674487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experience-dependent plasticity of dendritic spines of layer 2/3 pyramidal neurons in the mouse cortex.
    Ma L; Qiao Q; Tsai JW; Yang G; Li W; Gan WB
    Dev Neurobiol; 2016 Mar; 76(3):277-286. PubMed ID: 26033635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maternal Loss of Ube3a Impairs Experience-Driven Dendritic Spine Maintenance in the Developing Visual Cortex.
    Kim H; Kunz PA; Mooney R; Philpot BD; Smith SL
    J Neurosci; 2016 Apr; 36(17):4888-94. PubMed ID: 27122043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of neuronal K
    Nakamura K; Moorhouse AJ; Cheung DL; Eto K; Takeda I; Rozenbroek PW; Nabekura J
    J Physiol Sci; 2019 May; 69(3):453-463. PubMed ID: 30758780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Phosphodiesterase 9 Inhibitor PF-04449613 Promotes Dendritic Spine Formation and Performance Improvement after Motor Learning.
    Lai B; Li M; Hu W; Li W; Gan WB
    Dev Neurobiol; 2018 Sep; 78(9):859-872. PubMed ID: 30022611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor learning-induced new dendritic spines are preferentially involved in the learned task than existing spines.
    Qiao Q; Wu C; Ma L; Zhang H; Li M; Wu X; Gan WB
    Cell Rep; 2022 Aug; 40(7):111229. PubMed ID: 35977515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced sensory-evoked structural plasticity in the aging barrel cortex.
    Voglewede RL; Vandemark KM; Davidson AM; DeWitt AR; Heffler MD; Trimmer EH; Mostany R
    Neurobiol Aging; 2019 Sep; 81():222-233. PubMed ID: 31323444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural dynamics of dendritic spines are influenced by an environmental enrichment: an in vivo imaging study.
    Jung CK; Herms J
    Cereb Cortex; 2014 Feb; 24(2):377-84. PubMed ID: 23081882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging of experience-dependent structural plasticity in the mouse neocortex in vivo.
    Holtmaat A; De Paola V; Wilbrecht L; Knott GW
    Behav Brain Res; 2008 Sep; 192(1):20-5. PubMed ID: 18501438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remodeling of synaptic structure in sensory cortical areas in vivo.
    Majewska AK; Newton JR; Sur M
    J Neurosci; 2006 Mar; 26(11):3021-9. PubMed ID: 16540580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stably maintained dendritic spines are associated with lifelong memories.
    Yang G; Pan F; Gan WB
    Nature; 2009 Dec; 462(7275):920-4. PubMed ID: 19946265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repeated exposure to ketamine-xylazine during early development impairs motor learning-dependent dendritic spine plasticity in adulthood.
    Huang L; Yang G
    Anesthesiology; 2015 Apr; 122(4):821-31. PubMed ID: 25575163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered synaptic dynamics during normal brain aging.
    Mostany R; Anstey JE; Crump KL; Maco B; Knott G; Portera-Cailliau C
    J Neurosci; 2013 Feb; 33(9):4094-104. PubMed ID: 23447617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. REM sleep selectively prunes and maintains new synapses in development and learning.
    Li W; Ma L; Yang G; Gan WB
    Nat Neurosci; 2017 Mar; 20(3):427-437. PubMed ID: 28092659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interneuron Simplification and Loss of Structural Plasticity As Markers of Aging-Related Functional Decline.
    Eavri R; Shepherd J; Welsh CA; Flanders GH; Bear MF; Nedivi E
    J Neurosci; 2018 Sep; 38(39):8421-8432. PubMed ID: 30108129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo.
    Fu M; Yu X; Lu J; Zuo Y
    Nature; 2012 Feb; 483(7387):92-5. PubMed ID: 22343892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural plasticity within the barrel cortex during initial phases of whisker-dependent learning.
    Kuhlman SJ; O'Connor DH; Fox K; Svoboda K
    J Neurosci; 2014 Apr; 34(17):6078-83. PubMed ID: 24760867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for reduced experience-dependent dendritic spine plasticity in the aging prefrontal cortex.
    Bloss EB; Janssen WG; Ohm DT; Yuk FJ; Wadsworth S; Saardi KM; McEwen BS; Morrison JH
    J Neurosci; 2011 May; 31(21):7831-9. PubMed ID: 21613496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered sensory experience exacerbates stable dendritic spine and synapse loss in a mouse model of Huntington's disease.
    Murmu RP; Li W; Szepesi Z; Li JY
    J Neurosci; 2015 Jan; 35(1):287-98. PubMed ID: 25568121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.