These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33324190)

  • 1. Reinforcement Q-Learning Control With Reward Shaping Function for Swing Phase Control in a Semi-active Prosthetic Knee.
    Hutabarat Y; Ekkachai K; Hayashibe M; Kongprawechnon W
    Front Neurorobot; 2020; 14():565702. PubMed ID: 33324190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a Super Twisting Sliding Mode Controller for an MR Damper-Based Semi-Active Prosthetic Knee.
    Assfaw D; Seid S
    Front Robot AI; 2022; 9():870018. PubMed ID: 35663619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of Hippocampal Spatial Decoding Using a Dynamic Q-Learning Method With a Relative Reward Using Theta Phase Precession.
    Chen BW; Yang SH; Lo YC; Wang CF; Wang HL; Hsu CY; Kuo YT; Chen JC; Lin SH; Pan HC; Lee SW; Yu X; Qu B; Kuo CH; Chen YY; Lai HY
    Int J Neural Syst; 2020 Sep; 30(9):2050048. PubMed ID: 32787635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pilot study of the microprocessor-controlled prosthetic knee with a novel hydraulic damper.
    Zhang Y; Cao W; Yu H; Meng Q; Chen W
    Technol Health Care; 2020; 28(1):93-97. PubMed ID: 31476188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swing Phase Control of Semi-Active Prosthetic Knee Using Neural Network Predictive Control With Particle Swarm Optimization.
    Ekkachai K; Nilkhamhang I
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1169-1178. PubMed ID: 26829798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial.
    Cao W; Yu H; Zhao W; Meng Q; Chen W
    Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LORM: a novel reinforcement learning framework for biped gait control.
    Zhang W; Jiang Y; Farrukh FUD; Zhang C; Zhang D; Wang G
    PeerJ Comput Sci; 2022; 8():e927. PubMed ID: 35494792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic sub-route-based self-adaptive beam search Q-learning algorithm for traveling salesman problem.
    Zhang J; Liu Q; Han X
    PLoS One; 2023; 18(3):e0283207. PubMed ID: 36943840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target of physiological gait: Realization of speed adaptive control for a prosthetic knee during swing flexion.
    Cao W; Yu H; Zhao W; Li J; Wei X
    Technol Health Care; 2018; 26(1):133-144. PubMed ID: 29060946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reinforcement learning algorithm acquires demonstration from the training agent by dividing the task space.
    Zu L; He X; Yang J; Liu L; Wang W
    Neural Netw; 2023 Jul; 164():419-427. PubMed ID: 37187108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Multi-Dimensional Goal Aircraft Guidance Approach Based on Reinforcement Learning with a Reward Shaping Algorithm.
    Zu W; Yang H; Liu R; Ji Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuro-Inspired Reinforcement Learning to Improve Trajectory Prediction in Reward-Guided Behavior.
    Chen BW; Yang SH; Kuo CH; Chen JW; Lo YC; Kuo YT; Lin YC; Chang HC; Lin SH; Yu X; Qu B; Ro SV; Lai HY; Chen YY
    Int J Neural Syst; 2022 Sep; 32(9):2250038. PubMed ID: 35989578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kernel-based least squares policy iteration for reinforcement learning.
    Xu X; Hu D; Lu X
    IEEE Trans Neural Netw; 2007 Jul; 18(4):973-92. PubMed ID: 17668655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of a user-adaptive prosthetic knee across varying walking speeds: A randomized cross-over trial.
    Prinsen EC; Nederhand MJ; Sveinsdóttir HS; Prins MR; van der Meer F; Koopman HFJM; Rietman JS
    Gait Posture; 2017 Jan; 51():254-260. PubMed ID: 27838569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distributed deep reinforcement learning based on bi-objective framework for multi-robot formation.
    Li J; Liu Q; Chi G
    Neural Netw; 2024 Mar; 171():61-72. PubMed ID: 38091765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Speed-Adaptive Control of a Powered Geared Five-Bar Prosthetic Knee Using BP Neural Network Gait Recognition.
    Sun Y; Huang R; Zheng J; Dong D; Chen X; Bai L; Ge W
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31717856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online learning of shaping rewards in reinforcement learning.
    Grześ M; Kudenko D
    Neural Netw; 2010 May; 23(4):541-50. PubMed ID: 20116208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An approach to solving optimal control problems of nonlinear systems by introducing detail-reward mechanism in deep reinforcement learning.
    Yao S; Liu X; Zhang Y; Cui Z
    Math Biosci Eng; 2022 Jun; 19(9):9258-9290. PubMed ID: 35942758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.