These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33324376)

  • 1. Increasing Yield of 2,3,5,6-Tetramethylpyrazine in Baijiu Through
    Cui DY; Wei YN; Lin LC; Chen SJ; Feng PP; Xiao DG; Lin X; Zhang CY
    Front Microbiol; 2020; 11():596306. PubMed ID: 33324376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing diacetyl production of wine by overexpressing BDH1 and BDH2 in Saccharomyces uvarum.
    Li P; Guo X; Shi T; Hu Z; Chen Y; Du L; Xiao D
    J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1541-1550. PubMed ID: 28856461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine.
    Meng W; Wang R; Xiao D
    Biotechnol Lett; 2015 Dec; 37(12):2475-80. PubMed ID: 26385762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional design of a starter to assemble the initial microbial fermentation community of baijiu.
    Zhang W; Si G; Du H; Li J; Zhou P; Ye M
    Food Res Int; 2020 Aug; 134():109255. PubMed ID: 32517943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening and identification of high yield tetramethylpyrazine strains in Nongxiangxing liquor Daqu and study on the mechanism of tetramethylpyrazine production.
    Liu Y; Li M; Hong X; Li H; Huang R; Han S; Hou J; Pan C
    J Sci Food Agric; 2023 Nov; 103(14):6849-6860. PubMed ID: 37293782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced production of diacetyl by overexpressing BDH2 gene and ILV5 gene in yeast of the lager brewers with one ILV2 allelic gene deleted.
    Shi TT; Li P; Chen SJ; Chen YF; Guo XW; Xiao DG
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):397-405. PubMed ID: 28154948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PGK1 Promoter Library for the Regulation of Acetate Ester Production in Saccharomyces cerevisiae during Chinese Baijiu Fermentation.
    Cui DY; Zhang Y; Xu J; Zhang CY; Li W; Xiao DG
    J Agric Food Chem; 2018 Jul; 66(28):7417-7427. PubMed ID: 29939025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precursor supply strategy for tetramethylpyrazine production by bacillus subtilis on solid-state fermentation of wheat bran.
    Hao F; Wu Q; Xu Y
    Appl Biochem Biotechnol; 2013 Feb; 169(4):1346-52. PubMed ID: 23306895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving isobutanol production with the yeast
    Wess J; Brinek M; Boles E
    Biotechnol Biofuels; 2019; 12():173. PubMed ID: 31303893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of 2,3-butanediol stereoisomers formation in a newly isolated Serratia sp. T241.
    Zhang L; Guo Z; Chen J; Xu Q; Lin H; Hu K; Guan X; Shen Y
    Sci Rep; 2016 Jan; 6():19257. PubMed ID: 26753612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Molasses and Soybean Meal Content to Enhance Tetramethylpyrazine Yield by
    Li Y; Gan S; Luo L; Yang W; Mo L; Shang C
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient production of acetoin in Saccharomyces cerevisiae by disruption of 2,3-butanediol dehydrogenase and expression of NADH oxidase.
    Bae SJ; Kim S; Hahn JS
    Sci Rep; 2016 Jun; 6():27667. PubMed ID: 27279026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Saccharomyces cerevisiae for production of the valuable monoterpene d-limonene during Chinese Baijiu fermentation.
    Hu Z; Lin L; Li H; Li P; Weng Y; Zhang C; Yu A; Xiao D
    J Ind Microbiol Biotechnol; 2020 Jul; 47(6-7):511-523. PubMed ID: 32495196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of Tetramethylpyrazine from Cane Molasses by
    Li Y; Luo L; Ding X; Zhang X; Gan S; Shang C
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of tetramethylpyrazine by batch culture of Bacillus subtilis with optimal pH control strategy.
    Zhu BF; Xu Y
    J Ind Microbiol Biotechnol; 2010 Aug; 37(8):815-21. PubMed ID: 20437078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic engineering to alter carbon flux for various higher alcohol productions by Saccharomyces cerevisiae for Chinese Baijiu fermentation.
    Li W; Chen SJ; Wang JH; Zhang CY; Shi Y; Guo XW; Chen YF; Xiao DG
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1783-1795. PubMed ID: 29305698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of acetoin and its derivative tetramethylpyrazine from okara hydrolysate with Bacillus subtilis.
    Li T; Liu P; Guo G; Liu Z; Zhong L; Guo L; Chen C; Hao N; Ouyang P
    AMB Express; 2023 Feb; 13(1):25. PubMed ID: 36853576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli.
    Nielsen DR; Yoon SH; Yuan CJ; Prather KL
    Biotechnol J; 2010 Mar; 5(3):274-84. PubMed ID: 20213636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards diacetyl-less brewers' yeast. Influence of ilv2 and ilv5 mutations.
    Gjermansen C; Nilsson-Tillgren T; Petersen JG; Kielland-Brandt MC; Sigsgaard P; Holmberg S
    J Basic Microbiol; 1988; 28(3):175-83. PubMed ID: 3057172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prioritized Expression of BDH2 under Bulk Translational Repression and Its Contribution to Tolerance to Severe Vanillin Stress in Saccharomyces cerevisiae.
    Ishida Y; Nguyen TT; Kitajima S; Izawa S
    Front Microbiol; 2016; 7():1059. PubMed ID: 27458450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.