BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 33324662)

  • 1. Cryopreservation as a Key Element in the Successful Delivery of Cell-Based Therapies-A Review.
    Meneghel J; Kilbride P; Morris GJ
    Front Med (Lausanne); 2020; 7():592242. PubMed ID: 33324662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The individual-cell-based cryo-chip for the cryopreservation, manipulation and observation of spatially identifiable cells. I: methodology.
    Deutsch M; Afrimzon E; Namer Y; Shafran Y; Sobolev M; Zurgil N; Deutsch A; Howitz S; Greuner M; Thaele M; Zimmermann H; Meiser I; Ehrhart F
    BMC Cell Biol; 2010 Jul; 11():54. PubMed ID: 20609216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Cell Recovery: Freezing and Thawing Optimization of Induced Pluripotent Stem Cells.
    Uhrig M; Ezquer F; Ezquer M
    Cells; 2022 Feb; 11(5):. PubMed ID: 35269421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Approaches to Cryopreservation of Cells, Tissues, and Organs.
    Taylor MJ; Weegman BP; Baicu SC; Giwa SE
    Transfus Med Hemother; 2019 Jun; 46(3):197-215. PubMed ID: 31244588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanotechnology-based Cryopreservation of Cell-Scaffold Constructs: A New Breakthrough to Clinical Application.
    Chen G; Lv Y
    Cryo Letters; 2016; 37(6):381-387. PubMed ID: 28072423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated image processing as an analytical tool in cell cryopreservation for bioprocess development.
    Gretzinger S; Limbrunner S; Hubbuch J
    Bioprocess Biosyst Eng; 2019 May; 42(5):665-675. PubMed ID: 30719546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryobiology in human assisted reproductive technology. Would Hippocrates approve?
    Bredkjaer HE; Grudzinskas JG
    Early Pregnancy (Cherry Hill); 2001 Jul; 5(3):211-3. PubMed ID: 11753534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical Considerations in the Freezing, Low-Temperature Storage and Thawing of Stem Cells for Cellular Therapies.
    Hunt CJ
    Transfus Med Hemother; 2019 Jun; 46(3):134-150. PubMed ID: 31244583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in the slow freezing cryopreservation of microencapsulated cells.
    Gurruchaga H; Saenz Del Burgo L; Hernandez RM; Orive G; Selden C; Fuller B; Ciriza J; Pedraz JL
    J Control Release; 2018 Jul; 281():119-138. PubMed ID: 29782945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryopreservation and revival of mesenchymal stromal cells.
    Haack-Sørensen M; Kastrup J
    Methods Mol Biol; 2011; 698():161-74. PubMed ID: 21431518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The effect of the period of cryopreservative storage on the cryosurvival of human spermatozoa].
    Ma JX; Qian LX; Jiang TH; Lu Q; Wu HF
    Zhonghua Nan Ke Xue; 2003 Apr; 9(2):122-3. PubMed ID: 12749133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cryopreservation method for bioengineered 3D cell culture models.
    Herrero-Gómez A; Azagra M; Marco-Rius I
    Biomed Mater; 2022 Jun; 17(4):. PubMed ID: 35675803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective Cryopreservation and Recovery of Living Cells Encapsulated in Multiple Emulsions.
    Dluska E; Metera A; Markowska-Radomska A; Tudek B
    Biopreserv Biobank; 2019 Oct; 17(5):468-476. PubMed ID: 31347923
    [No Abstract]   [Full Text] [Related]  

  • 14. Cryopreservation Techniques for Ram Sperm.
    Saha A; Asaduzzaman M; Bari FY
    Vet Med Int; 2022; 2022():7378379. PubMed ID: 35535035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of 'in air' freezing on post-thaw recovery of Callithrix jacchus mesenchymal stromal cells and properties of 3D collagen-hydroxyapatite scaffolds.
    Mutsenko V; Knaack S; Lauterboeck L; Tarusin D; Sydykov B; Cabiscol R; Ivnev D; Belikan J; Beck A; Dipresa D; Lode A; El Khassawna T; Kampschulte M; Scharf R; Petrenko AY; Korossis S; Wolkers WF; Gelinsky M; Glasmacher B; Gryshkov O
    Cryobiology; 2020 Feb; 92():215-230. PubMed ID: 31972153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of slow cooling cryopreservation for human pluripotent stem cells.
    Miyazaki T; Nakatsuji N; Suemori H
    Genesis; 2014 Jan; 52(1):49-55. PubMed ID: 24254533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance.
    Rienzi L; Gracia C; Maggiulli R; LaBarbera AR; Kaser DJ; Ubaldi FM; Vanderpoel S; Racowsky C
    Hum Reprod Update; 2017 Mar; 23(2):139-155. PubMed ID: 27827818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in Cell Composition of Umbilical Cord Blood and Functional Activity of Hematopoietic Stem Cells during Cryogenic Storage and Repeated Freezing/Thawing Cycles.
    Romanov YA; Balashova EE; Volgina NE; Kabaeva NV; Dugina TN; Sukhikh GT
    Bull Exp Biol Med; 2016 Feb; 160(4):571-4. PubMed ID: 26906202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryopreservation of artificial cartilage: viability and functional examination after thawing.
    Lübke C; Sittinger M; Burmester GR; Paulitschke M
    Cells Tissues Organs; 2001; 169(4):368-76. PubMed ID: 11490116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What is the net effect of introducing vitrification for cryopreservation of surplus 2PN oocytes in an IVF program?
    Golakov M; Depenbusch M; Schultze-Mosgau A; Schoepper B; Hajek J; Neumann K; Griesinger G
    Arch Gynecol Obstet; 2018 Feb; 297(2):529-537. PubMed ID: 29230537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.