These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 3332492)
1. Mechanisms of freezing damage. Pegg DE Symp Soc Exp Biol; 1987; 41():363-78. PubMed ID: 3332492 [TBL] [Abstract][Full Text] [Related]
2. Principles of cryopreservation. Pegg DE Methods Mol Biol; 2007; 368():39-57. PubMed ID: 18080461 [TBL] [Abstract][Full Text] [Related]
3. Fracture phenomena in an isotonic salt solution during freezing and their elimination using glycerol. Gao DY; Lin S; Watson PF; Critser JK Cryobiology; 1995 Jun; 32(3):270-84. PubMed ID: 7781329 [TBL] [Abstract][Full Text] [Related]
5. On the mechanism of injury to slowly frozen erythrocytes. Pegg DE; Diaper MP Biophys J; 1988 Sep; 54(3):471-88. PubMed ID: 3207835 [TBL] [Abstract][Full Text] [Related]
6. Contribution of extracellular ice formation and the solution effects to the freezing injury of PC-3 cells suspended in NaCl solutions. Takamatsu H; Zawlodzka S Cryobiology; 2006 Aug; 53(1):1-11. PubMed ID: 16626679 [TBL] [Abstract][Full Text] [Related]
7. The history and principles of cryopreservation. Pegg DE Semin Reprod Med; 2002 Feb; 20(1):5-13. PubMed ID: 11941530 [TBL] [Abstract][Full Text] [Related]
8. Principles of cryopreservation. Pegg DE Methods Mol Biol; 2015; 1257():3-19. PubMed ID: 25428001 [TBL] [Abstract][Full Text] [Related]
9. Direct cell injury associated with eutectic crystallization during freezing. Han B; Bischof JC Cryobiology; 2004 Feb; 48(1):8-21. PubMed ID: 14969678 [TBL] [Abstract][Full Text] [Related]
10. The relevance of ice crystal formation for the cryopreservation of tissues and organs. Pegg DE Cryobiology; 2010 Jul; 60(3 Suppl):S36-44. PubMed ID: 20159009 [TBL] [Abstract][Full Text] [Related]
11. High ice nucleation temperature of zebrafish embryos: slow-freezing is not an option. Hagedorn M; Peterson A; Mazur P; Kleinhans FW Cryobiology; 2004 Oct; 49(2):181-9. PubMed ID: 15351689 [TBL] [Abstract][Full Text] [Related]
12. [Current knowledge on cryopreservation of spermatozoa, ovum cells and zygotes]. Radojcić L; Vukotić-Maletić V; Balint B Med Pregl; 1998; 51(1-2):29-36. PubMed ID: 9531771 [TBL] [Abstract][Full Text] [Related]
13. Ice formation in isolated human hepatocytes and human liver tissue. Bischof JC; Ryan CM; Tompkins RG; Yarmush ML; Toner M ASAIO J; 1997; 43(4):271-8. PubMed ID: 9242939 [TBL] [Abstract][Full Text] [Related]
14. Relative contributions of the fraction of unfrozen water and of salt concentration to the survival of slowly frozen human erythrocytes. Mazur P; Rall WF; Rigopoulos N Biophys J; 1981 Dec; 36(3):653-75. PubMed ID: 7326328 [TBL] [Abstract][Full Text] [Related]
15. Rapidly cooled human sperm: no evidence of intracellular ice formation. Morris GJ Hum Reprod; 2006 Aug; 21(8):2075-83. PubMed ID: 16613884 [TBL] [Abstract][Full Text] [Related]
16. Membrane damage occurs during the formation of intracellular ice. Acker JP; McGann LE Cryo Letters; 2001; 22(4):241-54. PubMed ID: 11788865 [TBL] [Abstract][Full Text] [Related]
18. Use of X-ray tomography to map crystalline and amorphous phases in frozen biomaterials. Bischof JC; Mahr B; Choi JH; Behling M; Mewes D Ann Biomed Eng; 2007 Feb; 35(2):292-304. PubMed ID: 17136446 [TBL] [Abstract][Full Text] [Related]
19. Prediction of ice content in biological model solutions when frozen under high pressure. Guignon B; Aparicio C; Otero L; Sanz PD Biotechnol Prog; 2009; 25(2):454-60. PubMed ID: 19294740 [TBL] [Abstract][Full Text] [Related]
20. A theoretical model of intracellular devitrification. Karlsson JO Cryobiology; 2001 May; 42(3):154-69. PubMed ID: 11578115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]