These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33325229)

  • 1. Revealing Dynamic Rotation of Single Graphene Nanoplatelets on Electrified Microinterfaces.
    Pendergast AD; Deng Z; Maroun F; Renault C; Dick JE
    ACS Nano; 2021 Jan; 15(1):1250-1258. PubMed ID: 33325229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlated Optical-Electrochemical Measurements Reveal Bidirectional Current Steps for Graphene Nanoplatelet Collisions at Ultramicroelectrodes.
    Pendergast AD; Renault C; Dick JE
    Anal Chem; 2021 Feb; 93(5):2898-2906. PubMed ID: 33491447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unravelling the last milliseconds of an individual graphene nanoplatelet before impact with a Pt surface by bipolar electrochemistry.
    Deng Z; Renault C
    Chem Sci; 2021 Sep; 12(37):12494-12500. PubMed ID: 34603681
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Park H; Park JH
    J Phys Chem Lett; 2020 Dec; 11(23):10250-10255. PubMed ID: 33210920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Electroosmotic Flow on Stochastic Collisions at Ultramicroelectrodes.
    Thorgaard SN; Jenkins S; Tarach AR
    Anal Chem; 2020 Sep; 92(18):12663-12669. PubMed ID: 32809815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thrombin aptasensing with inherently electroactive graphene oxide nanoplatelets as labels.
    Loo AH; Bonanni A; Pumera M
    Nanoscale; 2013 Jun; 5(11):4758-62. PubMed ID: 23604556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring dynamic interactions of single nanoparticles at interfaces for surface-confined electrochemical behavior and size measurement.
    Ma H; Chen JF; Wang HF; Hu PJ; Ma W; Long YT
    Nat Commun; 2020 May; 11(1):2307. PubMed ID: 32385284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inherently electroactive graphene oxide nanoplatelets as labels for specific protein-target recognition.
    Loo AH; Bonanni A; Pumera M
    Nanoscale; 2013 Sep; 5(17):7844-8. PubMed ID: 23846404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystalline silica particle functionalized by PEG for its collision-enhanced detection at ultramicroelectrode.
    Liu X; Chen X; Zhang L; Twum KJ; Wang X; Xu Y; Zeng X
    Anal Chim Acta; 2023 Jun; 1260():341178. PubMed ID: 37121651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Electrical Heating Textile Coated by Graphene Nanoplatelets/PVDF-HFP Composite with Various High Graphene Nanoplatelet Contents.
    Kim H; Lee S
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31137888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single graphene nanoplatelets: capacitance, potential of zero charge and diffusion coefficient.
    Poon J; Batchelor-McAuley C; Tschulik K; Compton RG
    Chem Sci; 2015 May; 6(5):2869-2876. PubMed ID: 28706674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Various Current Responses of Single Silver Nanoparticle Collisions on a Gold Ultramicroelectrode Depending on the Collision Conditions.
    Mun SK; Lee S; Kim DY; Kwon SJ
    Chem Asian J; 2017 Sep; 12(18):2434-2440. PubMed ID: 28662286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemiluminescence observing the surface features of Ru-doped silica nanoparticles based on nanoparticle-ultramicroelectrode collision.
    Lv X; Li M; Guo Z; Zheng X
    Luminescence; 2019 May; 34(3):334-340. PubMed ID: 30734468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pt Nanoparticle Collisions Detected by Electrocatalytic Amplification and Atomic Force Microscopy Imaging: Nanoparticle Collision Frequency, Adsorption, and Random Distribution at an Ultramicroelectrode Surface.
    Ortiz-Ledón CA; Zoski CG
    Anal Chem; 2017 Jun; 89(12):6424-6431. PubMed ID: 28541030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of the Optically Directed Assembly and Disassembly of Gold Nanoplatelet Arrays.
    Coursault D; Sule N; Parker J; Bao Y; Scherer NF
    Nano Lett; 2018 Jun; 18(6):3391-3399. PubMed ID: 29717877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene oxide nanoplatelet dispersions in concentrated NaCl and stabilization of oil/water emulsions.
    Yoon KY; An SJ; Chen Y; Lee JH; Bryant SL; Ruoff RS; Huh C; Johnston KP
    J Colloid Interface Sci; 2013 Aug; 403():1-6. PubMed ID: 23683958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single Nanoparticle Electrochemistry.
    Patrice FT; Qiu K; Ying YL; Long YT
    Annu Rev Anal Chem (Palo Alto Calif); 2019 Jun; 12(1):347-370. PubMed ID: 31018101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PEG 400-Based Phase Change Materials Nano-Enhanced with Functionalized Graphene Nanoplatelets.
    Marcos MA; Cabaleiro D; Guimarey MJG; Comuñas MJP; Fedele L; Fernández J; Lugo L
    Nanomaterials (Basel); 2017 Dec; 8(1):. PubMed ID: 29286324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inherently electroactive graphene oxide nanoplatelets as labels for single nucleotide polymorphism detection.
    Bonanni A; Chua CK; Zhao G; Sofer Z; Pumera M
    ACS Nano; 2012 Oct; 6(10):8546-51. PubMed ID: 22992186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirical potential for molecular simulation of graphene nanoplatelets.
    Bourque AJ; Rutledge GC
    J Chem Phys; 2018 Apr; 148(14):144709. PubMed ID: 29655320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.