These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33325480)

  • 1. Improved protein model quality assessment by integrating sequential and pairwise features using deep learning.
    Jing X; Xu J
    Bioinformatics; 2021 Apr; 36(22-23):5361-5367. PubMed ID: 33325480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of real-valued distance prediction for protein structure prediction with deep learning.
    Li J; Xu J
    Bioinformatics; 2021 Oct; 37(19):3197-3203. PubMed ID: 33961022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepUMQA: ultrafast shape recognition-based protein model quality assessment using deep learning.
    Guo SS; Liu J; Zhou XG; Zhang GJ
    Bioinformatics; 2022 Mar; 38(7):1895-1903. PubMed ID: 35134108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-equivariant graph neural networks for protein model quality assessment.
    Chen C; Chen X; Morehead A; Wu T; Cheng J
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36637199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving deep learning-based protein distance prediction in CASP14.
    Guo Z; Wu T; Liu J; Hou J; Cheng J
    Bioinformatics; 2021 Oct; 37(19):3190-3196. PubMed ID: 33961009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved estimation of model quality using predicted inter-residue distance.
    Ye L; Wu P; Peng Z; Gao J; Liu J; Yang J
    Bioinformatics; 2021 Nov; 37(21):3752-3759. PubMed ID: 34473228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPOT-1D-Single: improving the single-sequence-based prediction of protein secondary structure, backbone angles, solvent accessibility and half-sphere exposures using a large training set and ensembled deep learning.
    Singh J; Litfin T; Paliwal K; Singh J; Hanumanthappa AK; Zhou Y
    Bioinformatics; 2021 Oct; 37(20):3464-3472. PubMed ID: 33983382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep convolutional networks for quality assessment of protein folds.
    Derevyanko G; Grudinin S; Bengio Y; Lamoureux G
    Bioinformatics; 2018 Dec; 34(23):4046-4053. PubMed ID: 29931128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QDeep: distance-based protein model quality estimation by residue-level ensemble error classifications using stacked deep residual neural networks.
    Shuvo MH; Bhattacharya S; Bhattacharya D
    Bioinformatics; 2020 Jul; 36(Suppl_1):i285-i291. PubMed ID: 32657397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved protein structure prediction by deep learning irrespective of co-evolution information.
    Xu J; Mcpartlon M; Li J
    Nat Mach Intell; 2021 Jul; 3():601-609. PubMed ID: 34368623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DISTEMA: distance map-based estimation of single protein model accuracy with attentive 2D convolutional neural network.
    Chen X; Cheng J
    BMC Bioinformatics; 2022 Apr; 23(Suppl 3):141. PubMed ID: 35439931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of distance-based protein structure prediction by deep learning in CASP13.
    Xu J; Wang S
    Proteins; 2019 Dec; 87(12):1069-1081. PubMed ID: 31471916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein model quality assessment using 3D oriented convolutional neural networks.
    Pagès G; Charmettant B; Grudinin S
    Bioinformatics; 2019 Sep; 35(18):3313-3319. PubMed ID: 30874723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13.
    Hou J; Wu T; Cao R; Cheng J
    Proteins; 2019 Dec; 87(12):1165-1178. PubMed ID: 30985027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein Contact Map Prediction Based on ResNet and DenseNet.
    Li Z; Lin Y; Elofsson A; Yao Y
    Biomed Res Int; 2020; 2020():7584968. PubMed ID: 32337273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-protein interaction site prediction through combining local and global features with deep neural networks.
    Zeng M; Zhang F; Wu FX; Li Y; Wang J; Li M
    Bioinformatics; 2020 Feb; 36(4):1114-1120. PubMed ID: 31593229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks.
    Pan X; Shen HB
    Bioinformatics; 2018 Oct; 34(20):3427-3436. PubMed ID: 29722865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PIQLE: protein-protein interface quality estimation by deep graph learning of multimeric interaction geometries.
    Shuvo MH; Karim M; Roche R; Bhattacharya D
    Bioinform Adv; 2023; 3(1):vbad070. PubMed ID: 37351310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.