These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 33325506)

  • 1. Identification of differentially expressed gene modules in heterogeneous diseases.
    Zolotareva O; Khakabimamaghani S; Isaeva OI; Chervontseva Z; Savchik A; Ester M
    Bioinformatics; 2021 Jul; 37(12):1691-1698. PubMed ID: 33325506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MEXCOwalk: mutual exclusion and coverage based random walk to identify cancer modules.
    Ahmed R; Baali I; Erten C; Hoxha E; Kazan H
    Bioinformatics; 2020 Feb; 36(3):872-879. PubMed ID: 31432076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BiCoN: network-constrained biclustering of patients and omics data.
    Lazareva O; Canzar S; Yuan K; Baumbach J; Blumenthal DB; Tieri P; Kacprowski T; List M
    Bioinformatics; 2021 Aug; 37(16):2398-2404. PubMed ID: 33367514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network-based multi-task learning models for biomarker selection and cancer outcome prediction.
    Wang Z; He Z; Shah M; Zhang T; Fan D; Zhang W
    Bioinformatics; 2020 Mar; 36(6):1814-1822. PubMed ID: 31688914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Driver gene detection through Bayesian network integration of mutation and expression profiles.
    Chen Z; Lu Y; Cao B; Zhang W; Edwards A; Zhang K
    Bioinformatics; 2022 May; 38(10):2781-2790. PubMed ID: 35561191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TimesVector: a vectorized clustering approach to the analysis of time series transcriptome data from multiple phenotypes.
    Jung I; Jo K; Kang H; Ahn H; Yu Y; Kim S
    Bioinformatics; 2017 Dec; 33(23):3827-3835. PubMed ID: 28096084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases.
    Scherer P; Trębacz M; Simidjievski N; Viñas R; Shams Z; Terre HA; Jamnik M; Liò P
    Bioinformatics; 2022 Feb; 38(5):1320-1327. PubMed ID: 34888618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DEIsoM: a hierarchical Bayesian model for identifying differentially expressed isoforms using biological replicates.
    Peng H; Yang Y; Zhe S; Wang J; Gribskov M; Qi Y
    Bioinformatics; 2017 Oct; 33(19):3018-3027. PubMed ID: 28595376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a gene expression signature associated with breast cancer survival and risk that improves clinical genomic platforms.
    Bueno-Fortes S; Berral-Gonzalez A; Sánchez-Santos JM; Martin-Merino M; De Las Rivas J
    Bioinform Adv; 2023; 3(1):vbad037. PubMed ID: 37096121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved prediction of breast cancer outcome by identifying heterogeneous biomarkers.
    Choi J; Park S; Yoon Y; Ahn J
    Bioinformatics; 2017 Nov; 33(22):3619-3626. PubMed ID: 28961949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HOGMMNC: a higher order graph matching with multiple network constraints model for gene-drug regulatory modules identification.
    Chen J; Peng H; Han G; Cai H; Cai J
    Bioinformatics; 2019 Feb; 35(4):602-610. PubMed ID: 30052773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T2-DAG: a powerful test for differentially expressed gene pathways via graph-informed structural equation modeling.
    Jin J; Wang Y
    Bioinformatics; 2022 Jan; 38(4):1005-1014. PubMed ID: 34755844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CONFIGURE: A pipeline for identifying context specific regulatory modules from gene expression data and its application to breast cancer.
    Park S; Hwang D; Yeo YS; Kim H; Kang J
    BMC Med Genomics; 2019 Jul; 12(Suppl 5):97. PubMed ID: 31296219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying condition specific key genes from basal-like breast cancer gene expression data.
    Maind A; Raut S
    Comput Biol Chem; 2019 Feb; 78():367-374. PubMed ID: 30655072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cosbin: cosine score-based iterative normalization of biologically diverse samples.
    Wu CT; Shen M; Du D; Cheng Z; Parker SJ; Lu Y; Van Eyk JE; Yu G; Clarke R; Herrington DM; Wang Y
    Bioinform Adv; 2022; 2(1):vbac076. PubMed ID: 36330358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. INfORM: Inference of NetwOrk Response Modules.
    Marwah VS; Kinaret PAS; Serra A; Scala G; Lauerma A; Fortino V; Greco D
    Bioinformatics; 2018 Jun; 34(12):2136-2138. PubMed ID: 29425308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules.
    Yao X; Yan J; Liu K; Kim S; Nho K; Risacher SL; Greene CS; Moore JH; Saykin AJ; Shen L;
    Bioinformatics; 2017 Oct; 33(20):3250-3257. PubMed ID: 28575147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA dysregulational synergistic network: discovering microRNA dysregulatory modules across subtypes in non-small cell lung cancers.
    Tran N; Abhyankar V; Nguyen K; Weidanz J; Gao J
    BMC Bioinformatics; 2018 Dec; 19(Suppl 20):504. PubMed ID: 30577741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data.
    Ma S; Jiang T; Jiang R
    Bioinformatics; 2015 Feb; 31(4):563-71. PubMed ID: 25322838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network-based integration of multi-omics data for prioritizing cancer genes.
    Dimitrakopoulos C; Hindupur SK; Häfliger L; Behr J; Montazeri H; Hall MN; Beerenwinkel N
    Bioinformatics; 2018 Jul; 34(14):2441-2448. PubMed ID: 29547932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.