These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33325597)

  • 1. Temperature-mediated plasticity in incubation schedules is unlikely to evolve to buffer embryos from climatic challenges in a seasonal songbird.
    Cones AG; Liebl AL; Houslay TM; Russell AF
    J Evol Biol; 2021 Mar; 34(3):465-476. PubMed ID: 33325597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing breeding phenology does not affect incubation schedules in chestnut-crowned babblers: Opposing effects of temperature and wind.
    Capp E; Liebl AL; Cones AG; Russell AF
    Ecol Evol; 2018 Jan; 8(1):696-705. PubMed ID: 29321906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lizards fail to plastically adjust nesting behavior or thermal tolerance as needed to buffer populations from climate warming.
    Telemeco RS; Fletcher B; Levy O; Riley A; Rodriguez-Sanchez Y; Smith C; Teague C; Waters A; Angilletta MJ; Buckley LB
    Glob Chang Biol; 2017 Mar; 23(3):1075-1084. PubMed ID: 27558698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenological mismatch drives selection on elevation, but not on slope, of breeding time plasticity in a wild songbird.
    Ramakers JJC; Gienapp P; Visser ME
    Evolution; 2019 Feb; 73(2):175-187. PubMed ID: 30556587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parental Effects and Climate Change: Will Avian Incubation Behavior Shield Embryos from Increasing Environmental Temperatures?
    DuRant SE; Willson JD; Carroll RB
    Integr Comp Biol; 2019 Oct; 59(4):1068-1080. PubMed ID: 31168619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes.
    Kelly M
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180176. PubMed ID: 30966963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Australian songbird body size tracks climate variation: 82 species over 50 years.
    Gardner JL; Amano T; Peters A; Sutherland WJ; Mackey B; Joseph L; Stein J; Ikin K; Little R; Smith J; Symonds MRE
    Proc Biol Sci; 2019 Dec; 286(1916):20192258. PubMed ID: 31771472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proximate effects of temperature versus evolved intrinsic constraints for embryonic development times among temperate and tropical songbirds.
    Ton R; Martin TE
    Sci Rep; 2017 Apr; 7(1):895. PubMed ID: 28420877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of plasticity and adaptive responses to climate change along climate gradients.
    Kingsolver JG; Buckley LB
    Proc Biol Sci; 2017 Aug; 284(1860):. PubMed ID: 28814652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geographic variation in incubation behavior of a widely distributed passerine bird.
    Rohwer VG; Purcell JR
    PLoS One; 2019; 14(8):e0219907. PubMed ID: 31412068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dung beetles show metabolic plasticity as pupae and smaller adult body size in response to increased temperature mean and variance.
    Morgan Fleming J; Carter AW; Sheldon KS
    J Insect Physiol; 2021; 131():104215. PubMed ID: 33662376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Potential for Rapid Evolution under Anthropogenic Climate Change.
    Catullo RA; Llewelyn J; Phillips BL; Moritz CC
    Curr Biol; 2019 Oct; 29(19):R996-R1007. PubMed ID: 31593684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal plasticity in Drosophila melanogaster populations from eastern Australia: quantitative traits to transcripts.
    Clemson AS; Sgrò CM; Telonis-Scott M
    J Evol Biol; 2016 Dec; 29(12):2447-2463. PubMed ID: 27542565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential for adaptation to climate change: family-level variation in fitness-related traits and their responses to heat waves in a snail population.
    Leicht K; Seppälä K; Seppälä O
    BMC Evol Biol; 2017 Jun; 17(1):140. PubMed ID: 28619023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary and ecological patterns of thermal acclimation capacity in Drosophila: is it important for keeping up with climate change?
    Sørensen JG; Kristensen TN; Overgaard J
    Curr Opin Insect Sci; 2016 Oct; 17():98-104. PubMed ID: 27720081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communal nesting under climate change: fitness consequences of higher incubation temperatures for a nocturnal lizard.
    Dayananda B; Gray S; Pike D; Webb JK
    Glob Chang Biol; 2016 Jul; 22(7):2405-14. PubMed ID: 26940852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeatability, heritability, and age-dependence of seasonal plasticity in aggressiveness in a wild passerine bird.
    Araya-Ajoy YG; Dingemanse NJ
    J Anim Ecol; 2017 Mar; 86(2):227-238. PubMed ID: 27973682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental temperatures and phenotypic plasticity in reptiles: a systematic review and meta-analysis.
    Noble DWA; Stenhouse V; Schwanz LE
    Biol Rev Camb Philos Soc; 2018 Feb; 93(1):72-97. PubMed ID: 28464349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of plasticity to projected maximum temperatures and across climatically defined bioregions.
    Sandoval-Castillo J; Gates K; Brauer CJ; Smith S; Bernatchez L; Beheregaray LB
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):17112-17121. PubMed ID: 32647058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature and life history: experimental heating leads female tree swallows to modulate egg temperature and incubation behaviour.
    Ardia DR; Pérez JH; Chad EK; Voss MA; Clotfelter ED
    J Anim Ecol; 2009 Jan; 78(1):4-13. PubMed ID: 18637971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.