These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33325597)

  • 21. Development syndromes in New World temperate and tropical songbirds.
    Austin SH; Robinson WD; Robinson TR; Ellis VA; Ricklefs RE
    PLoS One; 2020; 15(8):e0233627. PubMed ID: 32804928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phenotypic plasticity in response to climate change: the importance of cue variation.
    Bonamour S; Chevin LM; Charmantier A; Teplitsky C
    Philos Trans R Soc Lond B Biol Sci; 2019 Mar; 374(1768):20180178. PubMed ID: 30966957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hotter nests produce hatchling lizards with lower thermal tolerance.
    Dayananda B; Murray BR; Webb JK
    J Exp Biol; 2017 Jun; 220(Pt 12):2159-2165. PubMed ID: 28615488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spring temperature drives phenotypic selection on plasticity of flowering time.
    Valdés A; Arnold PA; Ehrlén J
    Proc Biol Sci; 2023 Sep; 290(2006):20230670. PubMed ID: 37670583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tropical flatback turtle (Natator depressus) embryos are resilient to the heat of climate change.
    Howard R; Bell I; Pike DA
    J Exp Biol; 2015 Oct; 218(Pt 20):3330-5. PubMed ID: 26347558
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tritrophic phenological match-mismatch in space and time.
    Burgess MD; Smith KW; Evans KL; Leech D; Pearce-Higgins JW; Branston CJ; Briggs K; Clark JR; du Feu CR; Lewthwaite K; Nager RG; Sheldon BC; Smith JA; Whytock RC; Willis SG; Phillimore AB
    Nat Ecol Evol; 2018 Jun; 2(6):970-975. PubMed ID: 29686235
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Avian parental behavior and nest success influenced by temperature fluctuations.
    Carroll RL; Davis CA; Fuhlendorf SD; Elmore RD; DuRant SE; Carroll JM
    J Therm Biol; 2018 May; 74():140-148. PubMed ID: 29801620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenotypic plasticity of life-history traits of a calanoid copepod in a tropical lake: Is the magnitude of thermal plasticity related to thermal variability?
    Ortega-Mayagoitia E; Hernández-Martínez O; Ciros-Pérez J
    PLoS One; 2018; 13(4):e0196496. PubMed ID: 29708999
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for lower plasticity in CT
    Kellermann V; Sgrò CM
    J Evol Biol; 2018 Sep; 31(9):1300-1312. PubMed ID: 29876997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Passerines may be sufficiently plastic to track temperature-mediated shifts in optimum lay date.
    Phillimore AB; Leech DI; Pearce-Higgins JW; Hadfield JD
    Glob Chang Biol; 2016 Oct; 22(10):3259-72. PubMed ID: 27173755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maladaptive plasticity facilitates evolution of thermal tolerance during an experimental range shift.
    Leonard AM; Lancaster LT
    BMC Evol Biol; 2020 Apr; 20(1):47. PubMed ID: 32326878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Weak gene-gene interaction facilitates the evolution of gene expression plasticity.
    Kuo HC; Yao CT; Liao BY; Weng MP; Dong F; Hsu YC; Hung CM
    BMC Biol; 2023 Mar; 21(1):57. PubMed ID: 36941675
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of fluctuating temperature regimes on the embryonic development of lake whitefish (Coregonus clupeaformis).
    Lim MY; Manzon RG; Somers CM; Boreham DR; Wilson JY
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Dec; 214():19-29. PubMed ID: 28855119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antagonistic Responses of Exposure to Sublethal Temperatures: Adaptive Phenotypic Plasticity Coincides with a Reduction in Organismal Performance.
    Gilbert AL; Miles DB
    Am Nat; 2019 Sep; 194(3):344-355. PubMed ID: 31553209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal adaptation and phenotypic plasticity in a warming world: Insights from common garden experiments on Alaskan sockeye salmon.
    Sparks MM; Westley PAH; Falke JA; Quinn TP
    Glob Chang Biol; 2017 Dec; 23(12):5203-5217. PubMed ID: 28586156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bet hedging in a warming ocean: predictability of maternal environment shapes offspring size variation in marine sticklebacks.
    Shama LN
    Glob Chang Biol; 2015 Dec; 21(12):4387-400. PubMed ID: 26183221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic simulations predict that thermal and hydrological effects of climate change on Mediterranean trout cannot be offset by adaptive behaviour, evolution, and increased food production.
    Ayllón D; Railsback SF; Harvey BC; García Quirós I; Nicola GG; Elvira B; Almodóvar A
    Sci Total Environ; 2019 Nov; 693():133648. PubMed ID: 31634990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selection and evolutionary potential of spring arrival phenology in males and females of a migratory songbird.
    Tarka M; Hansson B; Hasselquist D
    J Evol Biol; 2015 May; 28(5):1024-38. PubMed ID: 25847825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geographical differences in maternal basking behaviour and offspring growth rate in a climatically widespread viviparous reptile.
    Cadby CD; Jones SM; Wapstra E
    J Exp Biol; 2014 Apr; 217(Pt 7):1175-9. PubMed ID: 24311810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolution of passerine incubation behavior: influence of food, temperature, and nest predation.
    Conway CJ; Martin TE
    Evolution; 2000 Apr; 54(2):670-85. PubMed ID: 10937242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.