These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33325724)

  • 1. Comparative Analysis of
    Cui K; He L; Zhao Y; Mu W; Lin J; Liu F
    Phytopathology; 2021 Aug; 111(8):1313-1326. PubMed ID: 33325724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iTRAQ Proteomic Analysis Reveals That Metabolic Pathways Involving Energy Metabolism Are Affected by Tea Tree Oil in
    Xu J; Shao X; Wei Y; Xu F; Wang H
    Front Microbiol; 2017; 8():1989. PubMed ID: 29075250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative quantitative proteomics of osmotic signal transduction mutants in Botrytis cinerea explain mutant phenotypes and highlight interaction with cAMP and Ca
    Kilani J; Davanture M; Simon A; Zivy M; Fillinger S
    J Proteomics; 2020 Feb; 212():103580. PubMed ID: 31733416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains.
    González-Fernández R; Aloria K; Valero-Galván J; Redondo I; Arizmendi JM; Jorrín-Novo JV
    J Proteomics; 2014 Jan; 97():195-221. PubMed ID: 23811051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic profile of the Bradysia odoriphaga in response to the microbial secondary metabolite benzothiazole.
    Zhao Y; Cui K; Xu C; Wang Q; Wang Y; Zhang Z; Liu F; Mu W
    Sci Rep; 2016 Nov; 6():37730. PubMed ID: 27883048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iTRAQ-based proteomic analysis reveals the mechanisms of Botrytis cinerea controlled with Wuyiencin.
    Shi L; Ge B; Wang J; Liu B; Ma J; Wei Q; Zhang K
    BMC Microbiol; 2019 Dec; 19(1):280. PubMed ID: 31829181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative proteomics reveals that tea tree oil effects Botrytis cinerea mitochondria function.
    Wang N; Shao X; Wei Y; Jiang S; Xu F; Wang H
    Pestic Biochem Physiol; 2020 Mar; 164():156-164. PubMed ID: 32284122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of an Antifungal Insect Defensin on the Proteome of the Phytopathogenic Fungus
    Aumer T; Voisin SN; Knobloch T; Landon C; Bulet P
    J Proteome Res; 2020 Mar; 19(3):1131-1146. PubMed ID: 31967833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of the inhibitory effect of oligochitosan on the fungal pathogen, Botrytis cinerea.
    Sui Y; Ma Z; Meng X
    J Sci Food Agric; 2019 Mar; 99(5):2622-2628. PubMed ID: 30417388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Transcriptome Profiles of the Fungus
    Cui K; Zhao Y; He L; Ding J; Li B; Mu W; Liu F
    Front Microbiol; 2020; 11():1043. PubMed ID: 32655508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic study of the membrane components of signalling cascades of Botrytis cinerea controlled by phosphorylation.
    Escobar-Niño A; Liñeiro E; Amil F; Carrasco R; Chiva C; Fuentes C; Blanco-Ulate B; Cantoral Fernández JM; Sabidó E; Fernández-Acero FJ
    Sci Rep; 2019 Jul; 9(1):9860. PubMed ID: 31285484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis of the phytopathogenic fungus Botrytis cinerea during cellulose degradation.
    Fernández-Acero FJ; Colby T; Harzen A; Cantoral JM; Schmidt J
    Proteomics; 2009 May; 9(10):2892-902. PubMed ID: 19415670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifungal mechanisms of volatile organic compounds produced by Pseudomonas fluorescens ZX as biological fumigants against Botrytis cinerea.
    Yue Y; Wang Z; Zhong T; Guo M; Huang L; Yang L; Kan J; Zalán Z; Hegyi F; Takács K; Du M
    Microbiol Res; 2023 Feb; 267():127253. PubMed ID: 36455309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis.
    Li B; Wang W; Zong Y; Qin G; Tian S
    J Proteome Res; 2012 Aug; 11(8):4249-60. PubMed ID: 22746291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New synthesis and biological evaluation of benzothiazole derivates as antifungal agents.
    Herrera Cano N; Ballari MS; López AG; Santiago AN
    J Agric Food Chem; 2015 Apr; 63(14):3681-6. PubMed ID: 25797910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compartmentalization of Melanin Biosynthetic Enzymes Contributes to Self-Defense against Intermediate Compound Scytalone in
    Chen X; Zhu C; Na Y; Ren D; Zhang C; He Y; Wang Y; Xiang S; Ren W; Jiang Y; Xu L; Zhu P
    mBio; 2021 Mar; 12(2):. PubMed ID: 33758088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-Structural Alterations in
    Youssef K; Roberto SR; de Oliveira AG
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31597236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endophytic Fungi Isolated from Plants Growing in Central Andean Precordillera of Chile with Antifungal Activity against
    Vidal A; Parada R; Mendoza L; Cotoras M
    J Fungi (Basel); 2020 Aug; 6(3):. PubMed ID: 32858807
    [No Abstract]   [Full Text] [Related]  

  • 19. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in
    Vasquez-Montaño E; Hoppe G; Vega A; Olivares-Yañez C; Canessa P
    mBio; 2020 Aug; 11(4):. PubMed ID: 32753496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, Bioactivity, and QSAR Study of 3,4-Dichlorophenyl Isoxazole-Substituted Stilbene Derivatives against the Phytopathogenic Fungus
    Lin X; Li Y; Zhong W; Hong T; Li L; Song S; He D
    J Agric Food Chem; 2021 Aug; 69(33):9520-9528. PubMed ID: 34382783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.