These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33325781)

  • 61. Estimating species phylogenies using coalescence times among sequences.
    Liu L; Yu L; Pearl DK; Edwards SV
    Syst Biol; 2009 Oct; 58(5):468-77. PubMed ID: 20525601
    [TBL] [Abstract][Full Text] [Related]  

  • 62. QuCo: quartet-based co-estimation of species trees and gene trees.
    Rabiee M; Mirarab S
    Bioinformatics; 2022 Jun; 38(Suppl 1):i413-i421. PubMed ID: 35758818
    [TBL] [Abstract][Full Text] [Related]  

  • 63. ecceTERA: comprehensive gene tree-species tree reconciliation using parsimony.
    Jacox E; Chauve C; Szöllősi GJ; Ponty Y; Scornavacca C
    Bioinformatics; 2016 Jul; 32(13):2056-8. PubMed ID: 27153713
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The influence of gene flow on species tree estimation: a simulation study.
    Leaché AD; Harris RB; Rannala B; Yang Z
    Syst Biol; 2014 Jan; 63(1):17-30. PubMed ID: 23945075
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Maximum likelihood models and algorithms for gene tree evolution with duplications and losses.
    Górecki P; Burleigh GJ; Eulenstein O
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S15. PubMed ID: 21342544
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The Unconstrained Diameters of the Duplication-Loss Cost and the Loss Cost.
    Gorecki P; Eulenstein O; Tiuryn J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2125-2135. PubMed ID: 31150345
    [TBL] [Abstract][Full Text] [Related]  

  • 67. AleRax: a tool for gene and species tree co-estimation and reconciliation under a probabilistic model of gene duplication, transfer, and loss.
    Morel B; Williams TA; Stamatakis A; Szöllősi GJ
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38514421
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Computing the Diameter of the Space of Maximum Parsimony Reconciliations in the Duplication-Transfer-Loss Model.
    Haack J; Zupke E; Ramirez A; Wu YC; Libeskind-Hadas R
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):14-22. PubMed ID: 29994484
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Efficient error correction algorithms for gene tree reconciliation based on duplication, duplication and loss, and deep coalescence.
    Chaudhary R; Burleigh JG; Eulenstein O
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S11. PubMed ID: 22759416
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Computing the probability of gene trees concordant with the species tree in the multispecies coalescent.
    Truszkowski J; Scornavacca C; Pardi F
    Theor Popul Biol; 2021 Feb; 137():22-31. PubMed ID: 33333117
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Consistency of SVDQuartets and Maximum Likelihood for Coalescent-Based Species Tree Estimation.
    Wascher M; Kubatko L
    Syst Biol; 2021 Jan; 70(1):33-48. PubMed ID: 32415974
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Identifiability and Reconstructibility of Species Phylogenies Under a Modified Coalescent.
    Long C; Kubatko L
    Bull Math Biol; 2019 Feb; 81(2):408-430. PubMed ID: 29926380
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Reconciling event-labeled gene trees with MUL-trees and species networks.
    Hellmuth M; Huber KT; Moulton V
    J Math Biol; 2019 Oct; 79(5):1885-1925. PubMed ID: 31410552
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Multiple Optimal Reconciliations Under the Duplication-Loss-Coalescence Model.
    Du H; Ong YS; Knittel M; Mawhorter R; Liu N; Gross G; Tojo R; Libeskind-Hadas R; Wu YC
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2144-2156. PubMed ID: 31199267
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Efficient genome-scale phylogenetic analysis under the duplication-loss and deep coalescence cost models.
    Bansal MS; Burleigh JG; Eulenstein O
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S42. PubMed ID: 20122216
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The inference of gene trees with species trees.
    Szöllősi GJ; Tannier E; Daubin V; Boussau B
    Syst Biol; 2015 Jan; 64(1):e42-62. PubMed ID: 25070970
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Incomplete lineage sorting: consistent phylogeny estimation from multiple loci.
    Mossel E; Roch S
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(1):166-71. PubMed ID: 20150678
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Polynomial-Time Algorithm for Minimizing the Deep Coalescence Cost for Level-1 Species Networks.
    LeMay M; Libeskind-Hadas R; Wu YC
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2642-2653. PubMed ID: 34406946
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Forcing external constraints on tree inference using ASTRAL.
    Rabiee M; Mirarab S
    BMC Genomics; 2020 Apr; 21(Suppl 2):218. PubMed ID: 32299337
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Bijective Diameters of Gene Tree Parsimony Costs.
    Gorecki P; Eulenstein O
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1723-1727. PubMed ID: 28792904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.