These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33325844)

  • 1. Low-cost single-point optoacoustic sensor for spectroscopic measurement of local vascular oxygenation.
    Stylogiannis A; Riobo L; Prade L; Glasl S; Klein S; Lucidi G; Fuchs M; Saur D; Ntziachristos V
    Opt Lett; 2020 Dec; 45(24):6579-6582. PubMed ID: 33325844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optoacoustic, noninvasive, real-time, continuous monitoring of cerebral blood oxygenation: an in vivo study in sheep.
    Petrov YY; Prough DS; Deyo DJ; Klasing M; Motamedi M; Esenaliev RO
    Anesthesiology; 2005 Jan; 102(1):69-75. PubMed ID: 15618789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues.
    Tzoumas S; Nunes A; Olefir I; Stangl S; Symvoulidis P; Glasl S; Bayer C; Multhoff G; Ntziachristos V
    Nat Commun; 2016 Jun; 7():12121. PubMed ID: 27358000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study.
    Esenaliev RO; Larina IV; Larin KV; Deyo DJ; Motamedi M; Prough DS
    Appl Opt; 2002 Aug; 41(22):4722-31. PubMed ID: 12153109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optoacoustic diagnostic modality: from idea to clinical studies with highly compact laser diode-based systems.
    Esenaliev RO
    J Biomed Opt; 2017 Sep; 22(9):91512. PubMed ID: 28444150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optoacoustic monitoring of cerebral venous blood oxygenation though intact scalp in large animals.
    Petrov IY; Petrov Y; Prough DS; Cicenaite I; Deyo DJ; Esenaliev RO
    Opt Express; 2012 Feb; 20(4):4159-67. PubMed ID: 22418173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo.
    Schwarz M; Buehler A; Aguirre J; Ntziachristos V
    J Biophotonics; 2016 Jan; 9(1-2):55-60. PubMed ID: 26530688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of low-cost photoacoustic imaging systems using very low-energy pulsed laser diodes.
    Hariri A; Fatima A; Mohammadian N; Mahmoodkalayeh S; Ansari MA; Bely N; Avanaki MRN
    J Biomed Opt; 2017 Jul; 22(7):75001. PubMed ID: 28697234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo frequency domain optoacoustic tomography.
    Kellnberger S; Deliolanis NC; Queirós D; Sergiadis G; Ntziachristos V
    Opt Lett; 2012 Aug; 37(16):3423-5. PubMed ID: 23381278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating blood oxygenation from photoacoustic images: can a simple linear spectroscopic inversion ever work?
    Hochuli R; An L; Beard PC; Cox BT
    J Biomed Opt; 2019 Dec; 24(12):1-13. PubMed ID: 31849203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Cost Multi-Wavelength Photoacoustic Imaging Based on Portable Continuous-Wave Laser Diode Module.
    Zhong H; Jiang D; Lan H; Duan T; Gao F; Gao F
    IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):738-745. PubMed ID: 32746335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed, low-cost, pulsed-laser-diode-based second-generation desktop photoacoustic tomography system.
    Kalva SK; Upputuri PK; Pramanik M
    Opt Lett; 2019 Jan; 44(1):81-84. PubMed ID: 30645563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optoacoustic Imaging of Human Vasculature: Feasibility by Using a Handheld Probe.
    Taruttis A; Timmermans AC; Wouters PC; Kacprowicz M; van Dam GM; Ntziachristos V
    Radiology; 2016 Oct; 281(1):256-63. PubMed ID: 27379543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time optoacoustic tomography of indocyanine green perfusion and oxygenation parameters in human finger vasculature.
    Lutzweiler C; Meier R; Rummeny E; Ntziachristos V; Razansky D
    Opt Lett; 2014 Jul; 39(14):4061-4. PubMed ID: 25121651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-dimensional optoacoustic monitoring of tissue heating with medium intensity focused ultrasound.
    Landa FJO; Penacoba SR; de Espinosa FM; Razansky D; Deán-Ben XL
    Ultrasonics; 2019 Apr; 94():117-123. PubMed ID: 30580815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous, noninvasive monitoring of total hemoglobin concentration by an optoacoustic technique.
    Esenaliev RO; Petrov YY; Hartrumpf O; Deyo DJ; Prough DS
    Appl Opt; 2004 Jun; 43(17):3401-7. PubMed ID: 15219019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear optoacoustic readings from diffusive media at near-infrared wavelengths.
    Malekzadeh-Najafabadi J; Prakash J; Ntziachristos V
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28787111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro photoacoustic measurement of hemoglobin oxygen saturation using a single pulsed broadband supercontinuum laser source.
    Lee C; Jeon M; Jeon MY; Kim J; Kim C
    Appl Opt; 2014 Jun; 53(18):3884-9. PubMed ID: 24979418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optoacoustic multispectral imaging of radiolucent foreign bodies in tissue.
    Page L; Maswadi S; Glickman RD
    Appl Spectrosc; 2013 Jan; 67(1):22-8. PubMed ID: 23317665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling, verification, and calibration of a photoacoustics based continuous non-invasive blood glucose monitoring system.
    Pai PP; Sanki PK; Sarangi S; Banerjee S
    Rev Sci Instrum; 2015 Jun; 86(6):064901. PubMed ID: 26133859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.