BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 33325947)

  • 1. Predicting the fluid behavior of random microfluidic mixers using convolutional neural networks.
    Wang J; Zhang N; Chen J; Su G; Yao H; Ho TY; Sun L
    Lab Chip; 2021 Jan; 21(2):296-309. PubMed ID: 33325947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GNN-Based Concentration Prediction With Variable Input Flow Rates for Microfluidic Mixers.
    Ji W; Guo X; Pan S; Long F; Ho TY; Schlichtmann U; Yao H
    IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):622-635. PubMed ID: 38393851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random design of microfluidics.
    Wang J; Brisk P; Grover WH
    Lab Chip; 2016 Oct; 16(21):4212-4219. PubMed ID: 27713978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finding the optimal design of a passive microfluidic mixer.
    Wang J; Zhang N; Chen J; Rodgers VGJ; Brisk P; Grover WH
    Lab Chip; 2019 Nov; 19(21):3618-3627. PubMed ID: 31576868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting cell behaviour parameters from glioblastoma on a chip images. A deep learning approach.
    Pérez-Aliacar M; Doweidar MH; Doblaré M; Ayensa-Jiménez J
    Comput Biol Med; 2021 Aug; 135():104547. PubMed ID: 34139437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Quantized CNN-Based Microfluidic Lensless-Sensing Mobile Blood-Acquisition and Analysis System.
    Liao Y; Yu N; Tian D; Li S; Li Z
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.
    Fechter T; Adebahr S; Baltas D; Ben Ayed I; Desrosiers C; Dolz J
    Med Phys; 2017 Dec; 44(12):6341-6352. PubMed ID: 28940372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Application of convolutional neural network to risk evaluation of positive circumferential resection margin of rectal cancer by magnetic resonance imaging].
    Xu JH; Zhou XM; Ma JL; Liu SS; Zhang MS; Zheng XF; Zhang XY; Liu GW; Zhang XX; Lu Y; Wang DS
    Zhonghua Wei Chang Wai Ke Za Zhi; 2020 Jun; 23(6):572-577. PubMed ID: 32521977
    [No Abstract]   [Full Text] [Related]  

  • 9. An effective classifier based on convolutional neural network and regularized extreme learning machine.
    He CM; Kang HY; Yao T; Li XR
    Math Biosci Eng; 2019 Sep; 16(6):8309-8321. PubMed ID: 31698669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets.
    Cha KH; Hadjiiski L; Samala RK; Chan HP; Caoili EM; Cohan RH
    Med Phys; 2016 Apr; 43(4):1882. PubMed ID: 27036584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.
    Yang X; Liu C; Wang Z; Yang J; Min HL; Wang L; Cheng KT
    Med Image Anal; 2017 Dec; 42():212-227. PubMed ID: 28850876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal pre-mixing dry-film stickers capable of retrofitting existing microfluidics.
    Delgado P; Oshinowo O; Fay ME; Luna CA; Dissanayaka A; Dorbala P; Ravindran A; Shen L; Myers DR
    Biomicrofluidics; 2023 Jan; 17(1):014104. PubMed ID: 36687143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient-specific and global convolutional neural networks for robust automatic liver tumor delineation in follow-up CT studies.
    Vivanti R; Joskowicz L; Lev-Cohain N; Ephrat A; Sosna J
    Med Biol Eng Comput; 2018 Sep; 56(9):1699-1713. PubMed ID: 29524116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning for Magnetic Resonance Fingerprinting: A New Approach for Predicting Quantitative Parameter Values from Time Series.
    Hoppe E; Körzdörfer G; Würfl T; Wetzl J; Lugauer F; Pfeuffer J; Maier A
    Stud Health Technol Inform; 2017; 243():202-206. PubMed ID: 28883201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating Convolutional Neural Networks for Cage-Free Floor Egg Detection.
    Li G; Xu Y; Zhao Y; Du Q; Huang Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printed Microfluidic Mixers-A Comparative Study on Mixing Unit Performances.
    Enders A; Siller IG; Urmann K; Hoffmann MR; Bahnemann J
    Small; 2019 Jan; 15(2):e1804326. PubMed ID: 30548194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Instantaneous simulation of fluids and particles in complex microfluidic devices.
    Wang J; Rodgers VGJ; Brisk P; Grover WH
    PLoS One; 2017; 12(12):e0189429. PubMed ID: 29267312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks.
    Le MH; Chen J; Wang L; Wang Z; Liu W; Cheng KT; Yang X
    Phys Med Biol; 2017 Jul; 62(16):6497-6514. PubMed ID: 28582269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.