These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33325971)

  • 1. Non-equilibrium growth and twist of cross-linked collagen fibrils.
    Leighton MP; Kreplak L; Rutenberg AD
    Soft Matter; 2021 Feb; 17(5):1415-1427. PubMed ID: 33325971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An equilibrium double-twist model for the radial structure of collagen fibrils.
    Brown AI; Kreplak L; Rutenberg AD
    Soft Matter; 2014 Nov; 10(42):8500-11. PubMed ID: 25238208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymorphism of stable collagen fibrils.
    Cameron S; Kreplak L; Rutenberg AD
    Soft Matter; 2018 Jun; 14(23):4772-4783. PubMed ID: 29799597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-band strain underestimates fibril strain for twisted collagen fibrils at low strains.
    Leighton MP; Rutenberg AD; Kreplak L
    J Mech Behav Biomed Mater; 2021 Dec; 124():104854. PubMed ID: 34601435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniform spatial distribution of collagen fibril radii within tendon implies local activation of pC-collagen at individual fibrils.
    Rutenberg AD; Brown AI; Kreplak L
    Phys Biol; 2016 Aug; 13(4):046008. PubMed ID: 27559989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils.
    Depalle B; Qin Z; Shefelbine SJ; Buehler MJ
    J Mech Behav Biomed Mater; 2015 Dec; 52():1-13. PubMed ID: 25153614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MMP-9 selectively cleaves non-D-banded material on collagen fibrils with discrete plasticity damage in mechanically-overloaded tendon.
    Baldwin SJ; Kreplak L; Lee JM
    J Mech Behav Biomed Mater; 2019 Jul; 95():67-75. PubMed ID: 30954916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
    Rigozzi S; Müller R; Stemmer A; Snedeker JG
    J Biomech; 2013 Feb; 46(4):813-8. PubMed ID: 23219277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen fibril assembly in the developing avian primary corneal stroma.
    Fitch JM; Linsenmayer CM; Linsenmayer TF
    Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):862-9. PubMed ID: 8125749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of collagen fibril seeds from embryonic tendon: fractured fibril ends nucleate new tip growth.
    Holmes DF; Tait A; Hodson NW; Sherratt MJ; Kadler KE
    J Mol Biol; 2010 May; 399(1):9-16. PubMed ID: 20385142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural response of tendon to excessive level or duration of tensile load supports that collagen fibrils are mechanically continuous.
    Hijazi KM; Singfield KL; Veres SP
    J Mech Behav Biomed Mater; 2019 Sep; 97():30-40. PubMed ID: 31085458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen fibrils forming in developing tendon show an early and abrupt limitation in diameter at the growing tips.
    Holmes DF; Graham HK; Kadler KE
    J Mol Biol; 1998 Nov; 283(5):1049-58. PubMed ID: 9799643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of tendon structure and function: regulation of collagen fibrillogenesis.
    Zhang G; Young BB; Ezura Y; Favata M; Soslowsky LJ; Chakravarti S; Birk DE
    J Musculoskelet Neuronal Interact; 2005 Mar; 5(1):5-21. PubMed ID: 15788867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new longitudinal variation in the structure of collagen fibrils and its relationship to locations of mechanical damage susceptibility.
    Baldwin SJ; Sampson J; Peacock CJ; Martin ML; Veres SP; Lee JM; Kreplak L
    J Mech Behav Biomed Mater; 2020 Oct; 110():103849. PubMed ID: 32501220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single collagen fibrils isolated from high stress and low stress tendons show differing susceptibility to enzymatic degradation by the interstitial collagenase matrix metalloproteinase-1 (MMP-1).
    Gsell KY; Veres SP; Kreplak L
    Matrix Biol Plus; 2023 Jun; 18():100129. PubMed ID: 36915648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen fibril growth during chicken tendon development: matrix metalloproteinase-2 and its activation.
    Jung JC; Wang PX; Zhang G; Ezura Y; Fini ME; Birk DE
    Cell Tissue Res; 2009 Apr; 336(1):79-89. PubMed ID: 19221802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corneal collagen fibril structure in three dimensions: Structural insights into fibril assembly, mechanical properties, and tissue organization.
    Holmes DF; Gilpin CJ; Baldock C; Ziese U; Koster AJ; Kadler KE
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7307-12. PubMed ID: 11390960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lysyl Oxidase Activity Is Required for Ordered Collagen Fibrillogenesis by Tendon Cells.
    Herchenhan A; Uhlenbrock F; Eliasson P; Weis M; Eyre D; Kadler KE; Magnusson SP; Kjaer M
    J Biol Chem; 2015 Jun; 290(26):16440-50. PubMed ID: 25979340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collagen fibril formation.
    Kadler KE; Holmes DF; Trotter JA; Chapman JA
    Biochem J; 1996 May; 316 ( Pt 1)(Pt 1):1-11. PubMed ID: 8645190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendon matures.
    Birk DE; Zycband EI; Woodruff S; Winkelmann DA; Trelstad RL
    Dev Dyn; 1997 Mar; 208(3):291-8. PubMed ID: 9056634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.