These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 33326249)
1. Well-Defined Lignin Model Films from Colloidal Lignin Particles. Farooq M; Zou T; Valle-Delgado JJ; Sipponen MH; Morits M; Österberg M Langmuir; 2020 Dec; 36(51):15592-15602. PubMed ID: 33326249 [TBL] [Abstract][Full Text] [Related]
2. Adsorption of Proteins on Colloidal Lignin Particles for Advanced Biomaterials. Leskinen T; Witos J; Valle-Delgado JJ; Lintinen K; Kostiainen M; Wiedmer SK; Österberg M; Mattinen ML Biomacromolecules; 2017 Sep; 18(9):2767-2776. PubMed ID: 28724292 [TBL] [Abstract][Full Text] [Related]
4. Affinity of Keratin Peptides for Cellulose and Lignin: A Fundamental Study toward Advanced Bio-Based Materials. Nuutinen EM; Valle-Delgado JJ; Kellock M; Farooq M; Österberg M Langmuir; 2022 Aug; 38(32):9917-9927. PubMed ID: 35930798 [TBL] [Abstract][Full Text] [Related]
5. Towards biomimicking wood: fabricated free-standing films of Nanocellulose, Lignin, and a synthetic polycation. Pillai K; Navarro Arzate F; Zhang W; Renneckar S J Vis Exp; 2014 Jun; (88):. PubMed ID: 24961302 [TBL] [Abstract][Full Text] [Related]
6. Model films from native cellulose nanofibrils. Preparation, swelling, and surface interactions. Ahola S; Salmi J; Johansson LS; Laine J; Osterberg M Biomacromolecules; 2008 Apr; 9(4):1273-82. PubMed ID: 18307305 [TBL] [Abstract][Full Text] [Related]
7. Interaction Mechanisms and Predictions of the Biofouling of Polymer Films: A Combined Atomic Force Microscopy and Quartz Crystal Microbalance with Dissipation Monitoring Study. Eskhan A; AlQasas N; Johnson D Langmuir; 2023 May; 39(18):6592-6612. PubMed ID: 37104647 [TBL] [Abstract][Full Text] [Related]
8. Surface-initiated dehydrogenative polymerization of monolignols: a quartz crystal microbalance with dissipation monitoring and atomic force microscopy study. Wang C; Qian C; Roman M; Glasser WG; Esker AR Biomacromolecules; 2013 Nov; 14(11):3964-72. PubMed ID: 24032374 [TBL] [Abstract][Full Text] [Related]
9. Cation-pi interactions as a mechanism in technical lignin adsorption to cationic surfaces. Pillai KV; Renneckar S Biomacromolecules; 2009 Apr; 10(4):798-804. PubMed ID: 19226174 [TBL] [Abstract][Full Text] [Related]
10. Smooth model surfaces from lignin derivatives. II. Adsorption of polyelectrolytes and PECs monitored by QCM-D. Norgren M; Gärdlund L; Notley SM; Htun M; Wågberg L Langmuir; 2007 Mar; 23(7):3737-43. PubMed ID: 17311437 [TBL] [Abstract][Full Text] [Related]
11. Colloidal Lignin Particles and Epoxies for Bio-Based, Durable, and Multiresistant Nanostructured Coatings. Henn KA; Forsman N; Zou T; Österberg M ACS Appl Mater Interfaces; 2021 Jul; 13(29):34793-34806. PubMed ID: 34261310 [TBL] [Abstract][Full Text] [Related]
12. Adsorption of chitosan on PET films monitored by quartz crystal microbalance. Indest T; Laine J; Ribitsch V; Johansson LS; Stana-Kleinschek K; Strnad S Biomacromolecules; 2008 Aug; 9(8):2207-14. PubMed ID: 18588342 [TBL] [Abstract][Full Text] [Related]
13. Nanocrystalline chitin thin films. Wang C; Esker AR Carbohydr Polym; 2014 Feb; 102():151-8. PubMed ID: 24507267 [TBL] [Abstract][Full Text] [Related]
14. Xyloglucan-Functional Latex Particles via RAFT-Mediated Emulsion Polymerization for the Biomimetic Modification of Cellulose. Hatton FL; Ruda M; Lansalot M; D'Agosto F; Malmström E; Carlmark A Biomacromolecules; 2016 Apr; 17(4):1414-24. PubMed ID: 26913868 [TBL] [Abstract][Full Text] [Related]
15. Functional Lignin Nanoparticles with Tunable Size and Surface Properties: Fabrication, Characterization, and Use in Layer-by-Layer Assembly. Alipoormazandarani N; Benselfelt T; Wang L; Wang X; Xu C; Wågberg L; Willför S; Fatehi P ACS Appl Mater Interfaces; 2021 Jun; 13(22):26308-26317. PubMed ID: 34042445 [TBL] [Abstract][Full Text] [Related]
16. Measurement of interaction forces between lignin and cellulose as a function of aqueous electrolyte solution conditions. Notley SM; Norgren M Langmuir; 2006 Dec; 22(26):11199-204. PubMed ID: 17154603 [TBL] [Abstract][Full Text] [Related]
17. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Marx KA Biomacromolecules; 2003; 4(5):1099-120. PubMed ID: 12959572 [TBL] [Abstract][Full Text] [Related]
18. Thin film of lignocellulosic nanofibrils with different chemical composition for QCM-D study. Kumagai A; Lee SH; Endo T Biomacromolecules; 2013 Jul; 14(7):2420-6. PubMed ID: 23721319 [TBL] [Abstract][Full Text] [Related]
19. Competitive Adsorption of Polyelectrolytes onto and into Pellicle-Coated Hydroxyapatite Investigated by QCM-D and Force Spectroscopy. Lee HS; Myers C; Zaidel L; Nalam PC; Caporizzo MA; A Daep C; Eckmann DM; Masters JG; Composto RJ ACS Appl Mater Interfaces; 2017 Apr; 9(15):13079-13091. PubMed ID: 28332813 [TBL] [Abstract][Full Text] [Related]
20. Enzymatically and chemically oxidized lignin nanoparticles for biomaterial applications. Mattinen ML; Valle-Delgado JJ; Leskinen T; Anttila T; Riviere G; Sipponen M; Paananen A; Lintinen K; Kostiainen M; Österberg M Enzyme Microb Technol; 2018 Apr; 111():48-56. PubMed ID: 29421036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]