BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 33326305)

  • 1. Nicotinic receptor modulation of primary afferent excitability with selective regulation of Aδ-mediated spinal actions.
    Shreckengost J; Halder M; Mena-Avila E; Garcia-Ramirez DL; Quevedo J; Hochman S
    J Neurophysiol; 2021 Feb; 125(2):568-585. PubMed ID: 33326305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serotonin, dopamine and noradrenaline adjust actions of myelinated afferents via modulation of presynaptic inhibition in the mouse spinal cord.
    García-Ramírez DL; Calvo JR; Hochman S; Quevedo JN
    PLoS One; 2014; 9(2):e89999. PubMed ID: 24587177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bicuculline-sensitive primary afferent depolarization remains after greatly restricting synaptic transmission in the mammalian spinal cord.
    Shreckengost J; Calvo J; Quevedo J; Hochman S
    J Neurosci; 2010 Apr; 30(15):5283-8. PubMed ID: 20392950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of α-adrenoceptors depresses synaptic transmission of myelinated afferents and inhibits pathways mediating primary afferent depolarization (PAD) in the in vitro mouse spinal cord.
    Mena-Avila E; Milla-Cruz JJ; Calvo JR; Hochman S; Villalón CM; Arias-Montaño JA; Quevedo JN
    Exp Brain Res; 2020 May; 238(5):1293-1303. PubMed ID: 32322928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extrasynaptic α
    Lucas-Osma AM; Li Y; Lin S; Black S; Singla R; Fouad K; Fenrich KK; Bennett DJ
    J Neurophysiol; 2018 Dec; 120(6):2953-2974. PubMed ID: 30256739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repetitive stimulation induced potentiation of excitatory transmission in the rat dorsal horn: an in vitro study.
    Jeftinija S; Urban L
    J Neurophysiol; 1994 Jan; 71(1):216-28. PubMed ID: 7908954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterosynaptic modulation of the dorsal root potential in the turtle spinal cord in vitro.
    Russo RE; Delgado-Lezama R; Hounsgaard J
    Exp Brain Res; 2007 Feb; 177(2):275-84. PubMed ID: 16983451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Branching points of primary afferent fibers are vital for the modulation of fiber excitability by epidural DC polarization and by GABA in the rat spinal cord.
    Li Y; Hari K; Lucas-Osma AM; Fenrich KK; Bennett DJ; Hammar I; Jankowska E
    J Neurophysiol; 2020 Jul; 124(1):49-62. PubMed ID: 32459560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. α(5)GABA(A) receptors mediate primary afferent fiber tonic excitability in the turtle spinal cord.
    Loeza-Alcocer E; Canto-Bustos M; Aguilar J; González-Ramírez R; Felix R; Delgado-Lezama R
    J Neurophysiol; 2013 Nov; 110(9):2175-84. PubMed ID: 23966669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The selective activation of dorsal horn neurons by potassium stimulation of high threshold primary afferent neurons in vitro.
    Jeftinija S; Urban L; Kojic L
    Neuroscience; 1993 Sep; 56(2):473-84. PubMed ID: 8247274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GABA-receptor-independent dorsal root afferents depolarization in the neonatal rat spinal cord.
    Kremer E; Lev-Tov A
    J Neurophysiol; 1998 May; 79(5):2581-92. PubMed ID: 9582230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local and diffuse mechanisms of primary afferent depolarization and presynaptic inhibition in the rat spinal cord.
    Lidierth M
    J Physiol; 2006 Oct; 576(Pt 1):309-27. PubMed ID: 16873417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presynaptic and postsynaptic effects of local cathodal DC polarization within the spinal cord in anaesthetized animal preparations.
    Bolzoni F; Jankowska E
    J Physiol; 2015 Feb; 593(4):947-66. PubMed ID: 25416625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of nicotinic receptor agonists on bladder afferent nerve activity in an in vitro bladder-pelvic nerve preparation.
    Yu Y; Daugherty SL; de Groat WC
    Brain Res; 2016 Apr; 1637():91-101. PubMed ID: 26876739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nicotine facilitates glycine release in the rat spinal dorsal horn.
    Kiyosawa A; Katsurabayashi S; Akaike N; Pang ZP; Akaike N
    J Physiol; 2001 Oct; 536(Pt 1):101-10. PubMed ID: 11579160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle afferent excitability testing in spinal root-intact rats: dissociating peripheral afferent and efferent volleys generated by intraspinal microstimulation.
    Tomatsu S; Kim G; Confais J; Seki K
    J Neurophysiol; 2017 Feb; 117(2):796-807. PubMed ID: 27974451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential modulation of nicotinic acetylcholine receptor subtypes and synaptic transmission in chick sympathetic ganglia by PGE(2).
    Du C; Role LW
    J Neurophysiol; 2001 Jun; 85(6):2498-508. PubMed ID: 11387396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nicotinic modulation of GABAergic synaptic transmission in the spinal cord dorsal horn.
    Genzen JR; McGehee DS
    Brain Res; 2005 Jan; 1031(2):229-37. PubMed ID: 15649448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Ca2+ ions in nicotinic facilitation of GABA release in mouse thalamus.
    Léna C; Changeux JP
    J Neurosci; 1997 Jan; 17(2):576-85. PubMed ID: 8987780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for nicotinic receptors potentially modulating nociceptive transmission at the level of the primary sensory neuron: studies with F11 cells.
    Puttfarcken PS; Manelli AM; Arneric SP; Donnelly-Roberts DL
    J Neurochem; 1997 Sep; 69(3):930-8. PubMed ID: 9282914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.