These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Spectroscopic and computational studies of reduction of the metal versus the tetrapyrrole ring of coenzyme F430 from methyl-coenzyme M reductase. Dey M; Kunz RC; Van Heuvelen KM; Craft JL; Horng YC; Tang Q; Bocian DF; George SJ; Brunold TC; Ragsdale SW Biochemistry; 2006 Oct; 45(39):11915-33. PubMed ID: 17002292 [TBL] [Abstract][Full Text] [Related]
3. A Nickel(II)-Containing Vitamin B Brenig C; Prieto L; Oetterli R; Zelder F Angew Chem Int Ed Engl; 2018 Dec; 57(50):16308-16312. PubMed ID: 30352140 [TBL] [Abstract][Full Text] [Related]
4. Spectroscopic and computational characterization of the nickel-containing F430 cofactor of methyl-coenzyme M reductase. Craft JL; Horng YC; Ragsdale SW; Brunold TC J Biol Inorg Chem; 2004 Jan; 9(1):77-89. PubMed ID: 14663648 [TBL] [Abstract][Full Text] [Related]
5. A new mechanism for methane production from methyl-coenzyme M reductase as derived from density functional calculations. Duin EC; McKee ML J Phys Chem B; 2008 Feb; 112(8):2466-82. PubMed ID: 18247503 [TBL] [Abstract][Full Text] [Related]
6. Effect of the methyl-coenzyme-m reductase protein matrix on the hole-size and nonplanar deformations of coenzyme F430. Mbofana C; Zimmer M Inorg Chem; 2006 Mar; 45(6):2598-602. PubMed ID: 16529481 [TBL] [Abstract][Full Text] [Related]
7. Coenzyme B induced coordination of coenzyme M via its thiol group to Ni(I) of F430 in active methyl-coenzyme M reductase. Finazzo C; Harmer J; Bauer C; Jaun B; Duin EC; Mahlert F; Goenrich M; Thauer RK; Van Doorslaer S; Schweiger A J Am Chem Soc; 2003 Apr; 125(17):4988-9. PubMed ID: 12708843 [TBL] [Abstract][Full Text] [Related]
8. A nickel hydride complex in the active site of methyl-coenzyme m reductase: implications for the catalytic cycle. Harmer J; Finazzo C; Piskorski R; Ebner S; Duin EC; Goenrich M; Thauer RK; Reiher M; Schweiger A; Hinderberger D; Jaun B J Am Chem Soc; 2008 Aug; 130(33):10907-20. PubMed ID: 18652465 [TBL] [Abstract][Full Text] [Related]
9. The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea. Zheng K; Ngo PD; Owens VL; Yang XP; Mansoorabadi SO Science; 2016 Oct; 354(6310):339-342. PubMed ID: 27846569 [TBL] [Abstract][Full Text] [Related]
10. Structure of an F430 variant from archaea associated with anaerobic oxidation of methane. Mayr S; Latkoczy C; Krüger M; Günther D; Shima S; Thauer RK; Widdel F; Jaun B J Am Chem Soc; 2008 Aug; 130(32):10758-67. PubMed ID: 18642902 [TBL] [Abstract][Full Text] [Related]
11. Elucidation of the biosynthesis of the methane catalyst coenzyme F Moore SJ; Sowa ST; Schuchardt C; Deery E; Lawrence AD; Ramos JV; Billig S; Birkemeyer C; Chivers PT; Howard MJ; Rigby SE; Layer G; Warren MJ Nature; 2017 Mar; 543(7643):78-82. PubMed ID: 28225763 [TBL] [Abstract][Full Text] [Related]
12. Direct determination of the number of electrons needed to reduce coenzyme F430 pentamethyl ester to the Ni(I) species exhibiting the electron paramagnetic resonance and ultraviolet-visible spectra characteristic for the MCR(red1) state of methyl-coenzyme M reductase. Piskorski R; Jaun B J Am Chem Soc; 2003 Oct; 125(43):13120-5. PubMed ID: 14570485 [TBL] [Abstract][Full Text] [Related]
13. The reaction mechanism of methyl-coenzyme M reductase: how an enzyme enforces strict binding order. Wongnate T; Ragsdale SW J Biol Chem; 2015 Apr; 290(15):9322-34. PubMed ID: 25691570 [TBL] [Abstract][Full Text] [Related]
14. Structural Dynamics of the Methyl-Coenzyme M Reductase Active Site Are Influenced by Coenzyme F Polêto MD; Allen KD; Lemkul JA Biochemistry; 2024 Jul; 63(14):1783-1794. PubMed ID: 38914925 [TBL] [Abstract][Full Text] [Related]
15. An investigation of possible competing mechanisms for Ni-containing methyl-coenzyme M reductase. Chen SL; Blomberg MR; Siegbahn PE Phys Chem Chem Phys; 2014 Jul; 16(27):14029-35. PubMed ID: 24901069 [TBL] [Abstract][Full Text] [Related]
16. Geometric and electronic structures of the Ni(I) and methyl-Ni(III) intermediates of methyl-coenzyme M reductase. Sarangi R; Dey M; Ragsdale SW Biochemistry; 2009 Apr; 48(14):3146-56. PubMed ID: 19243132 [TBL] [Abstract][Full Text] [Related]
17. Moderating influence of proteins on nonplanar tetrapyrrole deformations: coenzyme F430 in methyl-coenzyme-M reductase. Todd LN; Zimmer M Inorg Chem; 2002 Dec; 41(25):6831-7. PubMed ID: 12470081 [TBL] [Abstract][Full Text] [Related]
18. Focusing on a nickel hydrocorphinoid in a protein matrix: methane generation by methyl-coenzyme M reductase with F430 cofactor and its models. Miyazaki Y; Oohora K; Hayashi T Chem Soc Rev; 2022 Mar; 51(5):1629-1639. PubMed ID: 35148362 [TBL] [Abstract][Full Text] [Related]
19. Catalysis by methyl-coenzyme M reductase: a theoretical study for heterodisulfide product formation. Pelmenschikov V; Siegbahn PE J Biol Inorg Chem; 2003 Jul; 8(6):653-62. PubMed ID: 12728361 [TBL] [Abstract][Full Text] [Related]
20. On the mechanism of methyl-coenzyme M reductase. Ermler U Dalton Trans; 2005 Nov; (21):3451-8. PubMed ID: 16234924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]