These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 3332656)

  • 21. Locomotion and chemotaxis of leukocytes: gradient perception and locomotor capacity.
    Haston WS; Wilkinson PC
    Curr Opin Immunol; 1988; 1(1):5-9. PubMed ID: 3077300
    [No Abstract]   [Full Text] [Related]  

  • 22. Effects of neutrophil migration inhibitory factors on neonatal neutrophils.
    Kowanko IC; Ferrante A; Maxwell GM
    Pediatr Res; 1987 Apr; 21(4):377-80. PubMed ID: 3574989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The filter technique for measuring leucocyte locomotion in vitro. Comparison of three modifications.
    Keller H; Wissler JH; Damerau B; Hess MW; Cottier H
    J Immunol Methods; 1980; 36(1):41-53. PubMed ID: 7204995
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Possible roles of protein kinases in neutrophil chemotactic factor production by leucocytes in allergic inflammation in rats.
    Tanabe J; Watanabe M; Kondoh S; Mue S; Ohuchi K
    Br J Pharmacol; 1994 Dec; 113(4):1480-6. PubMed ID: 7889305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Action of antirheumatic drugs on the function of human leucocytes.
    Wildfeuer A
    Arzneimittelforschung; 1983; 33(5):780-3. PubMed ID: 6307321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemotactic and enzyme-releasing activity of amphipathic proteins for neutrophils. A possible role for protease in chemotaxis on substratum-bound protein gradients.
    Wilkinson PC; Bradley GR
    Immunology; 1981 Apr; 42(4):637-48. PubMed ID: 7016748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracapillary leucocyte accumulation as a novel antihaemorrhagic mechanism in acute pancreatitis in mice.
    Ryschich E; Kerkadze V; Deduchovas O; Salnikova O; Parseliunas A; Märten A; Hartwig W; Sperandio M; Schmidt J
    Gut; 2009 Nov; 58(11):1508-16. PubMed ID: 19460768
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative analysis of the ability of leucocytes, endothelial cells and platelets to degrade the subendothelial basement membrane: evidence for cytokine dependence and detection of a novel sulfatase.
    Bartlett MR; Underwood PA; Parish CR
    Immunol Cell Biol; 1995 Apr; 73(2):113-24. PubMed ID: 7797231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential neutrophil chemotactic response towards IL-8 and bacterial N-formyl peptides in term newborn infants.
    Stålhammar ME; Douhan Håkansson L; Jonzon A; Sindelar R
    Ups J Med Sci; 2017 Mar; 122(1):35-42. PubMed ID: 27690722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding of protein chemotactic factors to the surfaces of neutrophil leukocytes and its modification with lipid-specific bacterial toxins.
    Wilkinson PC; Allan RB
    Mol Cell Biochem; 1978 Jun; 20(1):25-40. PubMed ID: 672903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neutrophil migration in opposing chemoattractant gradients using microfluidic chemotaxis devices.
    Lin F; Nguyen CM; Wang SJ; Saadi W; Gross SP; Jeon NL
    Ann Biomed Eng; 2005 Apr; 33(4):475-82. PubMed ID: 15909653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leucocyte-endothelial cell adhesion in a model of intestinal inflammation.
    Arndt H; Palitzsch KD; Anderson DC; Rusche J; Grisham MB; Granger DN
    Gut; 1995 Sep; 37(3):374-9. PubMed ID: 7590433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A chemotactic role for prostaglandins released from polymorphonuclear leucocytes during phagocytosis.
    Higgs GA; McCall E; Youlten LJ
    Br J Pharmacol; 1975 Apr; 53(4):539-46. PubMed ID: 1148497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Actions of non-steroidal anti-inflammatory drugs on equine leucocyte movement in vitro.
    Dawson J; Lees P; Sedgwick AD
    J Vet Pharmacol Ther; 1987 Jun; 10(2):150-9. PubMed ID: 3612943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemotactic migration of leucocytes through corneal layers: an in vitro study.
    Basu PK; Minta JO
    Can J Ophthalmol; 1976 Jul; 11(3):235-40. PubMed ID: 949633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of chemotactic agents on the locomotion of equine polymorphonuclear and mononuclear leucocytes.
    Sedgwick AD; Dawson J; Lees P
    Res Vet Sci; 1987 Jul; 43(1):55-8. PubMed ID: 3628984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sphingosine kinase-dependent directional migration of leukocytes in response to phorbol ester.
    Kaneider NC; Djanani A; Fischer-Colbrie R; Wiedermann CJ
    Biochem Biophys Res Commun; 2002 Oct; 297(4):806-10. PubMed ID: 12359224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyclosporin A inhibits mitogen-activated but not phorbol ester-activated locomotion of human lymphocytes.
    Wilkinson PC; Higgins A
    Immunology; 1987 Jul; 61(3):311-6. PubMed ID: 3610213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Leucocyte adhesion to cells in immune and inflammatory responses.
    Patarroyo M; Makgoba MW
    Lancet; 1989 Nov; 2(8672):1139-42. PubMed ID: 2572856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leukocyte-endothelial cell recognition: evidence of a common molecular mechanism shared by neutrophils, lymphocytes, and other leukocytes.
    Lewinsohn DM; Bargatze RF; Butcher EC
    J Immunol; 1987 Jun; 138(12):4313-21. PubMed ID: 3584977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.