These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 33326755)
1. Using deep reinforcement learning to reveal how the brain encodes abstract state-space representations in high-dimensional environments. Cross L; Cockburn J; Yue Y; O'Doherty JP Neuron; 2021 Feb; 109(4):724-738.e7. PubMed ID: 33326755 [TBL] [Abstract][Full Text] [Related]
2. Human-level control through deep reinforcement learning. Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670 [TBL] [Abstract][Full Text] [Related]
3. Enhanced Dorsal Attention Network to Salience Network Interaction in Video Gamers During Sensorimotor Decision-Making Tasks. Jordan T; Dhamala M Brain Connect; 2023 Mar; 13(2):97-106. PubMed ID: 36053714 [No Abstract] [Full Text] [Related]
4. What can classic Atari video games tell us about the human brain? Köster R; Chadwick MJ Neuron; 2021 Feb; 109(4):568-570. PubMed ID: 33600753 [TBL] [Abstract][Full Text] [Related]
5. Unconscious reinforcement learning of hidden brain states supported by confidence. Cortese A; Lau H; Kawato M Nat Commun; 2020 Aug; 11(1):4429. PubMed ID: 32868772 [TBL] [Abstract][Full Text] [Related]
6. Value signals guide abstraction during learning. Cortese A; Yamamoto A; Hashemzadeh M; Sepulveda P; Kawato M; De Martino B Elife; 2021 Jul; 10():. PubMed ID: 34254586 [TBL] [Abstract][Full Text] [Related]
12. Transfer learning of deep neural network representations for fMRI decoding. Svanera M; Savardi M; Benini S; Signoroni A; Raz G; Hendler T; Muckli L; Goebel R; Valente G J Neurosci Methods; 2019 Dec; 328():108319. PubMed ID: 31585315 [TBL] [Abstract][Full Text] [Related]
13. Model Sharing in the Human Medial Temporal Lobe. Glitz L; Juechems K; Summerfield C; Garrett N J Neurosci; 2022 Jul; 42(27):5410-5426. PubMed ID: 35606146 [TBL] [Abstract][Full Text] [Related]
14. Reinforcement learning on slow features of high-dimensional input streams. Legenstein R; Wilbert N; Wiskott L PLoS Comput Biol; 2010 Aug; 6(8):. PubMed ID: 20808883 [TBL] [Abstract][Full Text] [Related]
15. Application of Deep Reinforcement Learning to NS-SHAFT Game Signal Control. Chang CL; Chen ST; Lin PY; Chang CY Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890943 [TBL] [Abstract][Full Text] [Related]
16. Brain signals of a Surprise-Actor-Critic model: Evidence for multiple learning modules in human decision making. Liakoni V; Lehmann MP; Modirshanechi A; Brea J; Lutti A; Gerstner W; Preuschoff K Neuroimage; 2022 Feb; 246():118780. PubMed ID: 34875383 [TBL] [Abstract][Full Text] [Related]
17. Enhancing neural encoding models for naturalistic perception with a multi-level integration of deep neural networks and cortical networks. Li Y; Yang H; Gu S Sci Bull (Beijing); 2024 Jun; 69(11):1738-1747. PubMed ID: 38490889 [TBL] [Abstract][Full Text] [Related]
19. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks. Jang H; Plis SM; Calhoun VD; Lee JH Neuroimage; 2017 Jan; 145(Pt B):314-328. PubMed ID: 27079534 [TBL] [Abstract][Full Text] [Related]
20. Entorhinal and ventromedial prefrontal cortices abstract and generalize the structure of reinforcement learning problems. Baram AB; Muller TH; Nili H; Garvert MM; Behrens TEJ Neuron; 2021 Feb; 109(4):713-723.e7. PubMed ID: 33357385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]