These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33326755)

  • 21. Representational Organization of Novel Task Sets during Proactive Encoding.
    Palenciano AF; González-García C; Arco JE; Pessoa L; Ruz M
    J Neurosci; 2019 Oct; 39(42):8386-8397. PubMed ID: 31427394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Representation learning in the artificial and biological neural networks underlying sensorimotor integration.
    Suhaimi A; Lim AWH; Chia XW; Li C; Makino H
    Sci Adv; 2022 Jun; 8(22):eabn0984. PubMed ID: 35658033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decoding Changes of Mind in Voluntary Action-Dynamics of Intentional Choice Representations.
    Löffler A; Haggard P; Bode S
    Cereb Cortex; 2020 Mar; 30(3):1199-1212. PubMed ID: 31504263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Why we stay with our social partners: Neural mechanisms of stay/leave decision-making.
    Heijne A; Rossi F; Sanfey AG
    Soc Neurosci; 2018 Dec; 13(6):667-679. PubMed ID: 28820016
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct representations in occipito-temporal, parietal, and premotor cortex during action perception revealed by fMRI and computational modeling.
    Urgen BA; Pehlivan S; Saygin AP
    Neuropsychologia; 2019 Apr; 127():35-47. PubMed ID: 30772426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Individual differences and the neural representations of reward expectation and reward prediction error.
    Cohen MX
    Soc Cogn Affect Neurosci; 2007 Mar; 2(1):20-30. PubMed ID: 17710118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A neural signature of hierarchical reinforcement learning.
    Ribas-Fernandes JJ; Solway A; Diuk C; McGuire JT; Barto AG; Niv Y; Botvinick MM
    Neuron; 2011 Jul; 71(2):370-9. PubMed ID: 21791294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Offline replay supports planning in human reinforcement learning.
    Momennejad I; Otto AR; Daw ND; Norman KA
    Elife; 2018 Dec; 7():. PubMed ID: 30547886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decoding and mapping task states of the human brain via deep learning.
    Wang X; Liang X; Jiang Z; Nguchu BA; Zhou Y; Wang Y; Wang H; Li Y; Zhu Y; Wu F; Gao JH; Qiu B
    Hum Brain Mapp; 2020 Apr; 41(6):1505-1519. PubMed ID: 31816152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combining STDP and binary networks for reinforcement learning from images and sparse rewards.
    Chevtchenko SF; Ludermir TB
    Neural Netw; 2021 Dec; 144():496-506. PubMed ID: 34601362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Minibatch Recursive Least Squares Q-Learning.
    Zhang C; Song Q; Meng Z
    Comput Intell Neurosci; 2021; 2021():5370281. PubMed ID: 34659393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Brain network dynamics during spontaneous strategy shifts and incremental task optimization.
    Allegra M; Seyed-Allaei S; Schuck NW; Amati D; Laio A; Reverberi C
    Neuroimage; 2020 Aug; 217():116854. PubMed ID: 32334091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A visual encoding model based on deep neural networks and transfer learning for brain activity measured by functional magnetic resonance imaging.
    Zhang C; Qiao K; Wang L; Tong L; Hu G; Zhang RY; Yan B
    J Neurosci Methods; 2019 Sep; 325():108318. PubMed ID: 31255596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning.
    Elfwing S; Uchibe E; Doya K
    Neural Netw; 2018 Nov; 107():3-11. PubMed ID: 29395652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural correlates of reinforcement learning and social preferences in competitive bidding.
    van den Bos W; Talwar A; McClure SM
    J Neurosci; 2013 Jan; 33(5):2137-46. PubMed ID: 23365249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decoding Internally and Externally Driven Movement Plans.
    Ariani G; Wurm MF; Lingnau A
    J Neurosci; 2015 Oct; 35(42):14160-71. PubMed ID: 26490857
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generalization of value in reinforcement learning by humans.
    Wimmer GE; Daw ND; Shohamy D
    Eur J Neurosci; 2012 Apr; 35(7):1092-104. PubMed ID: 22487039
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human midcingulate cortex encodes distributed representations of task progress.
    Holroyd CB; Ribas-Fernandes JJF; Shahnazian D; Silvetti M; Verguts T
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):6398-6403. PubMed ID: 29866834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning.
    Gläscher J; Daw N; Dayan P; O'Doherty JP
    Neuron; 2010 May; 66(4):585-95. PubMed ID: 20510862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Opponent Identity Influences Value Learning in Simple Games.
    Vickery TJ; Kleinman MR; Chun MM; Lee D
    J Neurosci; 2015 Aug; 35(31):11133-43. PubMed ID: 26245974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.