These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 33327063)
1. Transition from steady shear to oscillatory shear rheology of dense suspensions. Dong J; Trulsson M Phys Rev E; 2020 Nov; 102(5-1):052605. PubMed ID: 33327063 [TBL] [Abstract][Full Text] [Related]
2. Nonmonotonic flow curves of shear thickening suspensions. Mari R; Seto R; Morris JF; Denn MM Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052302. PubMed ID: 26066172 [TBL] [Abstract][Full Text] [Related]
3. Oscillatory rheology of dense, athermal suspensions of nearly hard spheres below the jamming point. Ness C; Xing Z; Eiser E Soft Matter; 2017 May; 13(19):3664-3674. PubMed ID: 28451674 [TBL] [Abstract][Full Text] [Related]
4. Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions: Stress, jamming, and contacts. Marschall TA; Teitel S Phys Rev E; 2019 Sep; 100(3-1):032906. PubMed ID: 31639991 [TBL] [Abstract][Full Text] [Related]
5. Constitutive Model for Time-Dependent Flows of Shear-Thickening Suspensions. Gillissen JJJ; Ness C; Peterson JD; Wilson HJ; Cates ME Phys Rev Lett; 2019 Nov; 123(21):214504. PubMed ID: 31809141 [TBL] [Abstract][Full Text] [Related]
6. Microstructural changes of concentrated Newtonian suspensions in the first oscillation cycles probed with linear and non-linear rheology. Minale M; Martone R; Carotenuto C Soft Matter; 2022 Aug; 18(32):6051-6065. PubMed ID: 35929371 [TBL] [Abstract][Full Text] [Related]
7. Constitutive relations for steady, dense granular flows. Berzi D; di Prisco CG; Vescovi D Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031301. PubMed ID: 22060355 [TBL] [Abstract][Full Text] [Related]
8. Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Wyart M; Cates ME Phys Rev Lett; 2014 Mar; 112(9):098302. PubMed ID: 24655284 [TBL] [Abstract][Full Text] [Related]
9. Simulation of dense non-Brownian suspensions with the lattice Boltzmann method: shear jammed and fragile states. Pradipto ; Hayakawa H Soft Matter; 2020 Jan; 16(4):945-959. PubMed ID: 31845696 [TBL] [Abstract][Full Text] [Related]
10. From Yielding to Shear Jamming in a Cohesive Frictional Suspension. Singh A; Pednekar S; Chun J; Denn MM; Morris JF Phys Rev Lett; 2019 Mar; 122(9):098004. PubMed ID: 30932528 [TBL] [Abstract][Full Text] [Related]
11. Direct observation of dynamic shear jamming in dense suspensions. Peters IR; Majumdar S; Jaeger HM Nature; 2016 Apr; 532(7598):214-7. PubMed ID: 27042934 [TBL] [Abstract][Full Text] [Related]
12. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments. Brader JM; Siebenbürger M; Ballauff M; Reinheimer K; Wilhelm M; Frey SJ; Weysser F; Fuchs M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061401. PubMed ID: 21230671 [TBL] [Abstract][Full Text] [Related]
13. Rheology of debris flow materials is controlled by the distance from jamming. Kostynick R; Matinpour H; Pradeep S; Haber S; Sauret A; Meiburg E; Dunne T; Arratia P; Jerolmack D Proc Natl Acad Sci U S A; 2022 Nov; 119(44):e2209109119. PubMed ID: 36279442 [TBL] [Abstract][Full Text] [Related]
14. Oscillatory and Steady Shear Rheology of Model Hydrophobically Modified Ethoxylated Urethane-Thickened Waterborne Paints. Ginzburg VV; Chatterjee T; Nakatani AI; Van Dyk AK Langmuir; 2018 Sep; 34(37):10993-11002. PubMed ID: 30142976 [TBL] [Abstract][Full Text] [Related]
15. Rheology and contact lifetimes in dense granular flows. Silbert LE; Grest GS; Brewster R; Levine AJ Phys Rev Lett; 2007 Aug; 99(6):068002. PubMed ID: 17930867 [TBL] [Abstract][Full Text] [Related]
16. Microscopic Origin of Frictional Rheology in Dense Suspensions: Correlations in Force Space. Thomas JE; Ramola K; Singh A; Mari R; Morris JF; Chakraborty B Phys Rev Lett; 2018 Sep; 121(12):128002. PubMed ID: 30296153 [TBL] [Abstract][Full Text] [Related]
17. Shear thickening and jamming in densely packed suspensions of different particle shapes. Brown E; Zhang H; Forman NA; Maynor BW; Betts DE; DeSimone JM; Jaeger HM Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031408. PubMed ID: 22060372 [TBL] [Abstract][Full Text] [Related]
18. Normal stresses in shear thickening granular suspensions. Pan Z; de Cagny H; Habibi M; Bonn D Soft Matter; 2017 May; 13(20):3734-3740. PubMed ID: 28463377 [TBL] [Abstract][Full Text] [Related]
19. Dichotomous behaviors of stress and dielectric relaxations in dense suspensions of swollen thermoreversible hydrogel microparticles. Misra C; Gadige P; Bandyopadhyay R J Colloid Interface Sci; 2023 Jan; 630(Pt A):223-231. PubMed ID: 36242882 [TBL] [Abstract][Full Text] [Related]
20. A frictional soliton controls the resistance law of shear-thickening suspensions in pipes. Bougouin A; Metzger B; Forterre Y; Boustingorry P; Lhuissier H Proc Natl Acad Sci U S A; 2024 Apr; 121(17):e2321581121. PubMed ID: 38625944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]