These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33327066)

  • 1. Free-energy landscapes of intrusion and extrusion of liquid in truncated and inverted truncated conical pores: Implications for the Cassie-Baxter to Wenzel transition.
    Iwamatsu M
    Phys Rev E; 2020 Nov; 102(5-1):052801. PubMed ID: 33327066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metastable wetting on superhydrophobic surfaces: continuum and atomistic views of the Cassie-Baxter-Wenzel transition.
    Giacomello A; Chinappi M; Meloni S; Casciola CM
    Phys Rev Lett; 2012 Nov; 109(22):226102. PubMed ID: 23368136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cassie-Baxter and Wenzel states on a nanostructured surface: phase diagram, metastabilities, and transition mechanism by atomistic free energy calculations.
    Giacomello A; Meloni S; Chinappi M; Casciola CM
    Langmuir; 2012 Jul; 28(29):10764-72. PubMed ID: 22708630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic analysis on wetting states and wetting state transitions of rough surfaces.
    Jiang Y; Lian J; Jiang Z; Li Y; Wen C
    Adv Colloid Interface Sci; 2020 Apr; 278():102136. PubMed ID: 32171897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of geometrical characteristics of surface roughness on droplet wetting.
    Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wetting Transition from the Cassie-Baxter State to the Wenzel State on Regularly Nanostructured Surfaces Induced by an Electric Field.
    Zhang BX; Wang SL; Wang XD
    Langmuir; 2019 Jan; 35(3):662-670. PubMed ID: 30601010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perpetual superhydrophobicity.
    Giacomello A; Schimmele L; Dietrich S; Tasinkevych M
    Soft Matter; 2016 Nov; 12(43):8927-8934. PubMed ID: 27747362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces.
    Vrancken RJ; Kusumaatmaja H; Hermans K; Prenen AM; Pierre-Louis O; Bastiaansen CW; Broer DJ
    Langmuir; 2010 Mar; 26(5):3335-41. PubMed ID: 19928892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of Droplet Evaporation on Superhydrophobic Surfaces.
    Fernandes HC; Vainstein MH; Brito C
    Langmuir; 2015 Jul; 31(27):7652-9. PubMed ID: 26086999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activated Wetting of Nanostructured Surfaces: Reaction Coordinates, Finite Size Effects, and Simulation Pitfalls.
    Amabili M; Meloni S; Giacomello A; Casciola CM
    J Phys Chem B; 2018 Jan; 122(1):200-212. PubMed ID: 29200302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cassie State Stability and Gas Restoration Capability of Superhydrophobic Surfaces with Truncated Cone-Shaped Pillars.
    Han X; Wang M; Yan R; Wang H
    Langmuir; 2021 Nov; 37(44):12897-12906. PubMed ID: 34714661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of a Cationic Surfactant on Droplet Wetting on Superhydrophobic Surfaces.
    Aldhaleai A; Tsai PA
    Langmuir; 2020 Apr; 36(16):4308-4316. PubMed ID: 32298121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cassie-Wenzel transition of a binary liquid mixture on a nanosculptured surface.
    Singh SL; Schimmele L; Dietrich S
    Phys Rev E; 2020 May; 101(5-1):052115. PubMed ID: 32575296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary origami: superhydrophobic ribbon surfaces and liquid marbles.
    McHale G; Newton MI; Shirtcliffe NJ; Geraldi NR
    Beilstein J Nanotechnol; 2011; 2():145-51. PubMed ID: 21977426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid-vapor transition on patterned solid surfaces in a shear flow.
    Yao W; Ren W
    J Chem Phys; 2015 Dec; 143(24):244701. PubMed ID: 26723696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the wetting transition of a liquid droplet sitting on a square-array cosine wave-like patterned surface.
    Promraksa A; Chuang YC; Chen LJ
    J Colloid Interface Sci; 2014 Mar; 418():8-19. PubMed ID: 24461812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition.
    Liu G; Fu L; Rode AV; Craig VS
    Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to make the Cassie wetting state stable?
    Whyman G; Bormashenko E
    Langmuir; 2011 Jul; 27(13):8171-6. PubMed ID: 21644550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.