These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33327073)

  • 1. Graph-based flow modeling approach adapted to multiscale discrete-fracture-network models.
    Doolaeghe D; Davy P; Hyman JD; Darcel C
    Phys Rev E; 2020 Nov; 102(5-1):053312. PubMed ID: 33327073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling flow and transport in fracture networks using graphs.
    Karra S; O'Malley D; Hyman JD; Viswanathan HS; Srinivasan G
    Phys Rev E; 2018 Mar; 97(3-1):033304. PubMed ID: 29776097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions.
    Hyman JD; Hagberg A; Srinivasan G; Mohd-Yusof J; Viswanathan H
    Phys Rev E; 2017 Jul; 96(1-1):013304. PubMed ID: 29347061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Method to Represent a Well in a Three-Dimensional Discrete Fracture Network Model.
    Pham H; Parashar R; Sund N; Pohlmann K
    Ground Water; 2021 Mar; 59(2):281-286. PubMed ID: 32629530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis and Visualization of Discrete Fracture Networks Using a Flow Topology Graph.
    Aldrich G; Hyman JD; Karra S; Gable CW; Makedonska N; Viswanathan H; Woodring J; Hamann B
    IEEE Trans Vis Comput Graph; 2017 Aug; 23(8):1896-1909. PubMed ID: 27333605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing the impact of particle behavior at fracture intersections in three-dimensional discrete fracture networks.
    Sherman T; Hyman JD; Bolster D; Makedonska N; Srinivasan G
    Phys Rev E; 2019 Jan; 99(1-1):013110. PubMed ID: 30780262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Appropriate Domain Size for Groundwater Flow Modeling with a Discrete Fracture Network Model.
    Ji SH; Koh YK
    Ground Water; 2017 Jan; 55(1):51-62. PubMed ID: 27305316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient flow modeling in fractured media using graphs.
    Srinivasan S; O'Malley D; Hyman JD; Karra S; Viswanathan HS; Srinivasan G
    Phys Rev E; 2020 Nov; 102(5-1):052310. PubMed ID: 33327157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying Topological Uncertainty in Fractured Systems using Graph Theory and Machine Learning.
    Srinivasan G; Hyman JD; Osthus DA; Moore BA; O'Malley D; Karra S; Rougier E; Hagberg AA; Hunter A; Viswanathan HS
    Sci Rep; 2018 Aug; 8(1):11665. PubMed ID: 30076388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and Simulation of Shale Fracture Attitude.
    Gao Q; Dong P; Liu C
    ACS Omega; 2021 Mar; 6(11):7312-7333. PubMed ID: 33778245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Input and benchmarking data for flow simulations in discrete fracture networks.
    Fumagalli A; Keilegavlen E; Scialò S
    Data Brief; 2018 Dec; 21():1135-1139. PubMed ID: 30456226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating Graph Robustness Through the Randic Index.
    De Meo P; Messina F; Rosaci D; Sarne GML; Vasilakos AV
    IEEE Trans Cybern; 2018 Nov; 48(11):3232-3242. PubMed ID: 29990094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transduction on Directed Graphs via Absorbing Random Walks.
    De J; Zhang X; Lin F; Cheng L; De J; Xiaowei Zhang ; Feng Lin ; Li Cheng ; De J; Cheng L; Zhang X; Lin F
    IEEE Trans Pattern Anal Mach Intell; 2018 Jul; 40(7):1770-1784. PubMed ID: 28809671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of radon diffusivity tensor for fractured rocks in cave mines using a discrete fracture network model.
    Ajayi KM; Shahbazi K; Tukkaraja P; Katzenstein K
    J Environ Radioact; 2019 Jan; 196():104-112. PubMed ID: 30447553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new algorithm to find fuzzy Hamilton cycle in a fuzzy network using adjacency matrix and minimum vertex degree.
    Nagoor Gani A; Latha SR
    Springerplus; 2016; 5(1):1854. PubMed ID: 27818892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Complexity of Optimal Design of Temporally Connected Graphs.
    Akrida EC; Gąsieniec L; Mertzios GB; Spirakis PG
    Theory Comput Syst; 2017; 61(3):907-944. PubMed ID: 32025196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual graph convolutional neural network for predicting chemical networks.
    Harada S; Akita H; Tsubaki M; Baba Y; Takigawa I; Yamanishi Y; Kashima H
    BMC Bioinformatics; 2020 Apr; 21(Suppl 3):94. PubMed ID: 32321421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep graphs-A general framework to represent and analyze heterogeneous complex systems across scales.
    Traxl D; Boers N; Kurths J
    Chaos; 2016 Jun; 26(6):065303. PubMed ID: 27368793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Extraction and Analysis of Graphs From Resting-State fMRI to Support a Correct and Robust Diagnostic Tool for Alzheimer's Disease.
    Bachmann C; Jacobs HIL; Porta Mana P; Dillen K; Richter N; von Reutern B; Dronse J; Onur OA; Langen KJ; Fink GR; Kukolja J; Morrison A
    Front Neurosci; 2018; 12():528. PubMed ID: 30323734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and numerical analysis of flow through a natural rough fracture subject to normal loading.
    Trinchero P; Zou L; de La Iglesia M; Iraola A; Bruines P; Deissmann G
    Sci Rep; 2024 Mar; 14(1):5587. PubMed ID: 38454042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.