These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Impact of collision models on the physical properties and the stability of lattice Boltzmann methods. Coreixas C; Wissocq G; Chopard B; Latt J Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190397. PubMed ID: 32564722 [TBL] [Abstract][Full Text] [Related]
6. Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations. Luo LS; Liao W; Chen X; Peng Y; Zhang W Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056710. PubMed ID: 21728696 [TBL] [Abstract][Full Text] [Related]
7. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows. Hejranfar K; Hajihassanpour M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013301. PubMed ID: 25679733 [TBL] [Abstract][Full Text] [Related]
8. Numerical analysis of the lattice Boltzmann method for simulation of linear acoustic waves. Dhuri DB; Hanasoge SM; Perlekar P; Robertsson JOA Phys Rev E; 2017 Apr; 95(4-1):043306. PubMed ID: 28505847 [TBL] [Abstract][Full Text] [Related]
11. Rectangular multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: General equilibrium and some important issues. Chai Z; Yuan X; Shi B Phys Rev E; 2023 Jul; 108(1-2):015304. PubMed ID: 37583231 [TBL] [Abstract][Full Text] [Related]
12. Lattice Boltzmann equation linear stability analysis: thermal and athermal models. Siebert DN; Hegele LA; Philippi PC Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026707. PubMed ID: 18352148 [TBL] [Abstract][Full Text] [Related]
13. Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology. Ba Y; Wang N; Liu H; Li Q; He G Phys Rev E; 2018 Mar; 97(3-1):033307. PubMed ID: 29776031 [TBL] [Abstract][Full Text] [Related]
14. Regularized lattice Bhatnagar-Gross-Krook model for two- and three-dimensional cavity flow simulations. Montessori A; Falcucci G; Prestininzi P; La Rocca M; Succi S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053317. PubMed ID: 25353924 [TBL] [Abstract][Full Text] [Related]
15. Regularized lattice Boltzmann model for a class of convection-diffusion equations. Wang L; Shi B; Chai Z Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043311. PubMed ID: 26565368 [TBL] [Abstract][Full Text] [Related]
16. Investigation of an entropic stabilizer for the lattice-Boltzmann method. Mattila KK; Hegele LA; Philippi PC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063010. PubMed ID: 26172795 [TBL] [Abstract][Full Text] [Related]
17. Semi-Lagrangian implicit Bhatnagar-Gross-Krook collision model for the finite-volume discrete Boltzmann method. Chen L; Succi S; Cai X; Schaefer L Phys Rev E; 2020 Jun; 101(6-1):063301. PubMed ID: 32688570 [TBL] [Abstract][Full Text] [Related]
18. Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. Lallemand P; Luo LS Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036706. PubMed ID: 14524925 [TBL] [Abstract][Full Text] [Related]
19. Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar-Gross-Krook lattice Boltzmann method. Krüger T; Varnik F; Raabe D Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):025701. PubMed ID: 20866869 [TBL] [Abstract][Full Text] [Related]
20. Accuracy of the viscous stress in the lattice Boltzmann equation with simple boundary conditions. Yong WA; Luo LS Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):065701. PubMed ID: 23367997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]