These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 33327142)
1. Low-frequency whistler waves excited by relativistic laser pulses. Song HH; Wang WM; Wang JQ; Li YT; Zhang J Phys Rev E; 2020 Nov; 102(5-1):053204. PubMed ID: 33327142 [TBL] [Abstract][Full Text] [Related]
2. Pulse duration constraint of whistler waves in magnetized dense plasma. Hata M; Sano T; Sentoku Y; Nagatomo H; Sakagami H Phys Rev E; 2021 Sep; 104(3-2):035205. PubMed ID: 34654167 [TBL] [Abstract][Full Text] [Related]
3. Thermonuclear fusion triggered by collapsing standing whistler waves in magnetized overdense plasmas. Sano T; Fujioka S; Mori Y; Mima K; Sentoku Y Phys Rev E; 2020 Jan; 101(1-1):013206. PubMed ID: 32069605 [TBL] [Abstract][Full Text] [Related]
4. Bursts of Terahertz Radiation from Large-Scale Plasmas Irradiated by Relativistic Picosecond Laser Pulses. Liao GQ; Li YT; Li C; Su LN; Zheng Y; Liu M; Wang WM; Hu ZD; Yan WC; Dunn J; Nilsen J; Hunter J; Liu Y; Wang X; Chen LM; Ma JL; Lu X; Jin Z; Kodama R; Sheng ZM; Zhang J Phys Rev Lett; 2015 Jun; 114(25):255001. PubMed ID: 26197129 [TBL] [Abstract][Full Text] [Related]
5. Excitation of surface plasma waves and fast electron generation in relativistic laser-plasma interaction. Raynaud M; Héron A; Adam JC Sci Rep; 2020 Aug; 10(1):13450. PubMed ID: 32778767 [TBL] [Abstract][Full Text] [Related]
7. Excitation of Chirping Whistler Waves in a Laboratory Plasma. Van Compernolle B; An X; Bortnik J; Thorne RM; Pribyl P; Gekelman W Phys Rev Lett; 2015 Jun; 114(24):245002. PubMed ID: 26196981 [TBL] [Abstract][Full Text] [Related]
8. Relativistic breather-type solitary waves with linear polarization in cold plasmas. Sánchez-Arriaga G; Siminos E; Saxena V; Kourakis I Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033102. PubMed ID: 25871219 [TBL] [Abstract][Full Text] [Related]
9. Uniform warm dense matter formed by direct laser heating in the presence of external magnetic fields. Wu D; Yu W; Sheng ZM; Fritzsche S; He XT Phys Rev E; 2020 May; 101(5-1):051202. PubMed ID: 32575343 [TBL] [Abstract][Full Text] [Related]
10. First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks. Spong DA; Heidbrink WW; Paz-Soldan C; Du XD; Thome KE; Van Zeeland MA; Collins C; Lvovskiy A; Moyer RA; Austin ME; Brennan DP; Liu C; Jaeger EF; Lau C Phys Rev Lett; 2018 Apr; 120(15):155002. PubMed ID: 29756886 [TBL] [Abstract][Full Text] [Related]
11. Broadening of cyclotron resonance conditions in the relativistic interaction of an intense laser with overdense plasmas. Sano T; Tanaka Y; Iwata N; Hata M; Mima K; Murakami M; Sentoku Y Phys Rev E; 2017 Oct; 96(4-1):043209. PubMed ID: 29347491 [TBL] [Abstract][Full Text] [Related]
12. Whistler modes with wave magnetic fields exceeding the ambient field. Stenzel RL; Urrutia JM; Strohmaier KD Phys Rev Lett; 2006 Mar; 96(9):095004. PubMed ID: 16606272 [TBL] [Abstract][Full Text] [Related]
13. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations. Fu X; Cowee MM; Friedel RH; Funsten HO; Gary SP; Hospodarsky GB; Kletzing C; Kurth W; Larsen BA; Liu K; MacDonald EA; Min K; Reeves GD; Skoug RM; Winske D J Geophys Res Space Phys; 2014 Oct; 119(10):8288-8298. PubMed ID: 26167433 [TBL] [Abstract][Full Text] [Related]
14. Plasma concept for generating circularly polarized electromagnetic waves with relativistic amplitude. Sano T; Tatsumi Y; Hata M; Sentoku Y Phys Rev E; 2020 Nov; 102(5-1):053214. PubMed ID: 33327076 [TBL] [Abstract][Full Text] [Related]
15. Wave dispersion in a counterstreaming, cold, magnetized, electron-positron plasma. Verdon MW; Melrose DB Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046403. PubMed ID: 18517741 [TBL] [Abstract][Full Text] [Related]
16. Ultrafast wave-particle energy transfer in the collapse of standing whistler waves. Sano T; Hata M; Kawahito D; Mima K; Sentoku Y Phys Rev E; 2019 Nov; 100(5-1):053205. PubMed ID: 31869898 [TBL] [Abstract][Full Text] [Related]
17. Coupling between whistler waves and ion-scale solitary waves: cluster measurements in the magnetotail during a substorm. Tenerani A; Le Contel O; Califano F; Pegoraro F; Robert P; Cornilleau-Wehrlin N; Sauvaud JA Phys Rev Lett; 2012 Oct; 109(15):155005. PubMed ID: 23102320 [TBL] [Abstract][Full Text] [Related]
18. Role of Kinetic Instability in Runaway-Electron Avalanches and Elevated Critical Electric Fields. Liu C; Hirvijoki E; Fu GY; Brennan DP; Bhattacharjee A; Paz-Soldan C Phys Rev Lett; 2018 Jun; 120(26):265001. PubMed ID: 30004735 [TBL] [Abstract][Full Text] [Related]
19. Wave dispersion near cyclotron resonance in pulsar plasmas. Melrose DB; Luo Q Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016404. PubMed ID: 15324175 [TBL] [Abstract][Full Text] [Related]
20. Whistler mode based explanation for the fast reconnection rate measured in the mit versatile toroidal facility. Singh N Phys Rev Lett; 2011 Dec; 107(24):245003. PubMed ID: 22243006 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]