These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33327145)

  • 41. Ensemble coding of vocal control in birdsong.
    Leonardo A; Fee MS
    J Neurosci; 2005 Jan; 25(3):652-61. PubMed ID: 15659602
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparisons of different methods to train a young zebra finch (Taeniopygia guttata) to learn a song.
    Derégnaucourt S; Poirier C; Kant AV; Linden AV; Gahr M
    J Physiol Paris; 2013 Jun; 107(3):210-8. PubMed ID: 22982543
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of neural circuitry for precise temporal sequences through spontaneous activity, axon remodeling, and synaptic plasticity.
    Jun JK; Jin DZ
    PLoS One; 2007 Aug; 2(8):e723. PubMed ID: 17684568
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vivo recording of single-unit activity during singing in zebra finches.
    Okubo TS; Mackevicius EL; Fee MS
    Cold Spring Harb Protoc; 2014 Oct; 2014(12):1273-83. PubMed ID: 25342072
    [TBL] [Abstract][Full Text] [Related]  

  • 45. On embedding synfire chains in a balanced network.
    Aviel Y; Mehring C; Abeles M; Horn D
    Neural Comput; 2003 Jun; 15(6):1321-40. PubMed ID: 12816575
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Manipulations of inhibition in cortical circuitry differentially affect spectral and temporal features of Bengalese finch song.
    Isola GR; Vochin A; Sakata JT
    J Neurophysiol; 2020 Feb; 123(2):815-830. PubMed ID: 31967928
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Triphasic spike-timing-dependent plasticity organizes networks to produce robust sequences of neural activity.
    Waddington A; Appleby PA; De Kamps M; Cohen N
    Front Comput Neurosci; 2012; 6():88. PubMed ID: 23162457
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intrinsic neuronal properties represent song and error in zebra finch vocal learning.
    Daou A; Margoliash D
    Nat Commun; 2020 Feb; 11(1):952. PubMed ID: 32075972
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Population coding of song element sequence in the Bengalese finch HVC.
    Nishikawa J; Okada M; Okanoya K
    Eur J Neurosci; 2008 Jun; 27(12):3273-83. PubMed ID: 18598266
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Early Auditory Experience Modifies Neuronal Firing Properties in the Zebra Finch Auditory Cortex.
    Kudo T; Morohashi Y; Yazaki-Sugiyama Y
    Front Neural Circuits; 2020; 14():570174. PubMed ID: 33132855
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dissociation between extension of the sensitive period for avian vocal learning and dendritic spine loss in the song nucleus lMAN.
    Heinrich JE; Nordeen KW; Nordeen EJ
    Neurobiol Learn Mem; 2005 Mar; 83(2):143-50. PubMed ID: 15721798
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Timing of perineuronal net development in the zebra finch song control system correlates with developmental song learning.
    Cornez G; Jonckers E; Ter Haar SM; Van der Linden A; Cornil CA; Balthazart J
    Proc Biol Sci; 2018 Jul; 285(1883):. PubMed ID: 30051835
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neural dynamics underlying birdsong practice and performance.
    Singh Alvarado J; Goffinet J; Michael V; Liberti W; Hatfield J; Gardner T; Pearson J; Mooney R
    Nature; 2021 Nov; 599(7886):635-639. PubMed ID: 34671166
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of social environment on singing behavior in the zebra finch (Taeniopygia guttata) and its implication for neuronal recruitment.
    Adar E; Lotem A; Barnea A
    Behav Brain Res; 2008 Feb; 187(1):178-84. PubMed ID: 17950475
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automatic reconstruction of physiological gestures used in a model of birdsong production.
    Boari S; Perl YS; Amador A; Margoliash D; Mindlin GB
    J Neurophysiol; 2015 Nov; 114(5):2912-22. PubMed ID: 26378204
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cross-fostering diminishes song discrimination in zebra finches (Taeniopygia guttata).
    Campbell DL; Hauber ME
    Anim Cogn; 2009 May; 12(3):481-90. PubMed ID: 19130101
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nearest neighbours reveal fast and slow components of motor learning.
    Kollmorgen S; Hahnloser RHR; Mante V
    Nature; 2020 Jan; 577(7791):526-530. PubMed ID: 31915383
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neuronal stability and drift across periods of sleep: premotor activity patterns in a vocal control nucleus of adult zebra finches.
    Rauske PL; Chi Z; Dave AS; Margoliash D
    J Neurosci; 2010 Feb; 30(7):2783-94. PubMed ID: 20164361
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Detailed temporal structure of communication networks in groups of songbirds.
    Stowell D; Gill L; Clayton D
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27335223
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simulation of the song motor pathway in birds: A single neuron initiates a chain of events that produces birdsong with realistic spectra properties.
    Giordani C; Rivera-Gutierrez H; Zhe S; Micheletto R
    PLoS One; 2018; 13(10):e0200998. PubMed ID: 30289918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.