These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 33327164)
1. Deep machine learning interatomic potential for liquid silica. Balyakin IA; Rempel SV; Ryltsev RE; Rempel AA Phys Rev E; 2020 Nov; 102(5-1):052125. PubMed ID: 33327164 [TBL] [Abstract][Full Text] [Related]
2. Raman spectrum and polarizability of liquid water from deep neural networks. Sommers GM; Calegari Andrade MF; Zhang L; Wang H; Car R Phys Chem Chem Phys; 2020 May; 22(19):10592-10602. PubMed ID: 32377657 [TBL] [Abstract][Full Text] [Related]
3. Development of interatomic potential for Al-Tb alloys using a deep neural network learning method. Tang L; Yang ZJ; Wen TQ; Ho KM; Kramer MJ; Wang CZ Phys Chem Chem Phys; 2020 Sep; 22(33):18467-18479. PubMed ID: 32778859 [TBL] [Abstract][Full Text] [Related]
4. High-Accuracy Neural Network Interatomic Potential for Silicon Nitride. Xu H; Li Z; Zhang Z; Liu S; Shen S; Guo Y Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110937 [TBL] [Abstract][Full Text] [Related]
5. Revealing the thermal decomposition mechanism of RDX crystals by a neural network potential. Chu Q; Chang X; Ma K; Fu X; Chen D Phys Chem Chem Phys; 2022 Nov; 24(42):25885-25894. PubMed ID: 36259743 [TBL] [Abstract][Full Text] [Related]
6. Predicting Structural Properties of Pure Silica Zeolites Using Deep Neural Network Potentials. Sours TG; Kulkarni AR J Phys Chem C Nanomater Interfaces; 2023 Jan; 127(3):1455-1463. PubMed ID: 36733763 [TBL] [Abstract][Full Text] [Related]
7. Molecular dynamics simulation of metallic Al-Ce liquids using a neural network machine learning interatomic potential. Tang L; Ho KM; Wang CZ J Chem Phys; 2021 Nov; 155(19):194503. PubMed ID: 34800941 [TBL] [Abstract][Full Text] [Related]
8. Quality of uncertainty estimates from neural network potential ensembles. Kahle L; Zipoli F Phys Rev E; 2022 Jan; 105(1-2):015311. PubMed ID: 35193257 [TBL] [Abstract][Full Text] [Related]
9. Neural Network Force Fields for Metal Growth Based on Energy Decompositions. Hu Q; Weng M; Chen X; Li S; Pan F; Wang LW J Phys Chem Lett; 2020 Feb; 11(4):1364-1369. PubMed ID: 32000486 [TBL] [Abstract][Full Text] [Related]
10. Efficient Molecular Dynamics Simulations of Deep Eutectic Solvents with First-Principles Accuracy Using Machine Learning Interatomic Potentials. Shayestehpour O; Zahn S J Chem Theory Comput; 2023 Dec; 19(23):8732-8742. PubMed ID: 37972596 [TBL] [Abstract][Full Text] [Related]
11. NNP/MM: Accelerating Molecular Dynamics Simulations with Machine Learning Potentials and Molecular Mechanics. Galvelis R; Varela-Rial A; Doerr S; Fino R; Eastman P; Markland TE; Chodera JD; De Fabritiis G J Chem Inf Model; 2023 Sep; 63(18):5701-5708. PubMed ID: 37694852 [TBL] [Abstract][Full Text] [Related]
12. Accurate and Transferable Machine Learning Potential for Molecular Dynamics Simulation of Sodium Silicate Glasses. Bertani M; Charpentier T; Faglioni F; Pedone A J Chem Theory Comput; 2024 Feb; 20(3):1358-1370. PubMed ID: 38217496 [TBL] [Abstract][Full Text] [Related]
13. Nanosecond solvation dynamics of the hematite/liquid water interface at hybrid DFT accuracy using committee neural network potentials. Schienbein P; Blumberger J Phys Chem Chem Phys; 2022 Jun; 24(25):15365-15375. PubMed ID: 35703465 [TBL] [Abstract][Full Text] [Related]
14. Ab initio molecular dynamics and high-dimensional neural network potential study of VZrNbHfTa melt. Balyakin IA; Yuryev AA; Gelchinski BR; Rempel AA J Phys Condens Matter; 2020 May; 32(21):214006. PubMed ID: 31978911 [TBL] [Abstract][Full Text] [Related]
15. Machine learning-driven investigation of the structure and dynamics of the BMIM-BF Zills F; Schäfer MR; Tovey S; Kästner J; Holm C Faraday Discuss; 2024 Oct; 253(0):129-145. PubMed ID: 39056186 [TBL] [Abstract][Full Text] [Related]
16. Efficient Training of Machine Learning Potentials by a Randomized Atomic-System Generator. Choi YJ; Jhi SH J Phys Chem B; 2020 Oct; 124(39):8704-8710. PubMed ID: 32910653 [TBL] [Abstract][Full Text] [Related]
17. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Machine Learning Interatomic Potentials for the Properties of Gold Nanoparticles. Fronzi M; Amos RD; Kobayashi R; Matsumura N; Watanabe K; Morizawa RK Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364667 [TBL] [Abstract][Full Text] [Related]
19. Local structure, thermodynamics, and melting of boron phosphide at high pressures by deep learning-driven ab initio simulations. Chtchelkatchev NM; Ryltsev RE; Magnitskaya MV; Gorbunov SM; Cherednichenko KA; Solozhenko VL; Brazhkin VV J Chem Phys; 2023 Aug; 159(6):. PubMed ID: 37551816 [TBL] [Abstract][Full Text] [Related]
20. Improving the reliability of machine learned potentials for modeling inhomogeneous liquids. Fazel K; Karimitari N; Shah T; Sutton C; Sundararaman R J Comput Chem; 2024 Aug; 45(21):1821-1828. PubMed ID: 38662330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]